

This article is devoted to a numerical simulation of the flow in a jet mill ejector equipped with a gas flow control element. This element is a channel wherefrom an additional gas flow enters the accelerating tube of the ejector. The gas flows in the mill ejector are controlled using the energy of additional gas flows, thus increasing the velocity of the main flow at the outlet of the ejector accelerating tube and producing a protective layer around the tube walls to prevent their wear. At the same time, there is no substantiation for the choice of optimal control parameters, a methodology, or scientific methods for gas flow control in the ejector channels. The purpose of this work is to investigate the effect of the location of the gas flow control element on gas-dynamic ejector performance and the flow pattern in the ejector channels. A numerical study was carried out using the Ansys Fluent software package and the SST k- turbulence model. In the course of the study, the pressure of the additional gas flow and the distance from the accelerating tube inlet to the energy carrier supply channel were varied. The angle of the additional gas flow was 20°. The numerical simulation gave flow patterns in the ejector as a function of the location of the gas flow control element. Streamlines of the additional gas flow were constructed. The article presents the average flow velocity at the accelerating tube outlet and the energy carrier flow rate as a function of the pressure of the additional flow of the energy carrier and the location of the gas flow control element and the maximum values of the average outlet velocity for given pressure ranges. The article substantiates the choice of the gas flow control parameters that maximize the velocity of the mixed flow at the accelerating tube outlet at a minimum gas flow rate. The results may be used in improving material processing technologies.

Keywords: control elements, ejector unit, numerical simulation, additional gas flow.

-

[15]:

$$\mu = \mu_0 \left(\frac{T}{T_0}\right)^{3/2} \frac{T_0 + C}{T + C},$$

$$\mu_0 - , \qquad T = T_0, \qquad T_0 = 273 \qquad \mu_0 = 1,71 \cdot 10^{-5} \cdot / {}^2; C - , \qquad C = 117.$$

[16]:

$$\begin{split} \frac{\partial(\rho k)}{\partial t} + \frac{\partial(\rho k u_i)}{\partial x_i} &= \frac{\partial}{\partial x_j} \left(\Gamma_k \frac{\partial k}{\partial x_j} \right) + G_k - Y_k + S_k, \\ \frac{\partial(\rho \omega)}{\partial t} + \frac{\partial(\rho \omega u_i)}{\partial x_i} &= \frac{\partial}{\partial x_j} \left(\Gamma_\omega \frac{\partial \omega}{\partial x_j} \right) + G_\omega - Y_\omega + D_\omega + S_\omega, \\ k - & , ; ; \omega - & , \\ / ; \Gamma_k, \Gamma_\omega - & k & \omega & ; G_k, G_\omega - & , \\ / ; \Gamma_k, Y_\omega - & ; D_\omega - & ; S_k, S_\omega - & , \\ 300 & - & ; \\ - & , & ,$$

•

-

(4 – 5)

•

,

. 10 : $1 - X_{e\partial} = 14$; $2 - X_{e\partial} = 50$; $3 - X_{e\partial} = 50$

,

.

,

. 1.

_

•

	1 –			-
			G_a , /	W _a , /
1	$p_{e\partial} = 0,10$, $l_{\theta\partial} = 14$	0,0375	174,1
2	$p_{_{\theta}\partial_{-}} = 0,12$, $l_{ed} = 14$	0,0389	180,2
3	$p_{_{6}\partial} = 0,14$, $l_{BO} = 14$	0,0399	184,6
4	$p_{_{6}\partial} = 0,16$, $l_{BO} = 14$	0,0408	188,3
5	$p_{_{\theta}\partial} = 0,10$, $l_{\theta\partial} = 50$	0,0373	173,7
6	$p_{_{BO}} = 0,12$, $l_{\theta\partial} = 50$	0,0388	179,8
7	$p_{_{BO}} = 0,14$, $l_{\theta\partial} = 50$	0,0399	184,6
8	$p_{_{\theta}\partial} = 0,16$, $l_{\theta\partial} = 50$	0,0409	188,6
9	$p_{_{\theta}\partial} = 0,10$, $l_{\theta\partial} = 90$	0,0373	173,4
10	$p_{_{BO}} = 0,12$, $l_{\theta\partial} = 90$	0,0389	180,2
11	$p_{_{BO}} = 0,14$, $l_{\theta\partial} = 90$	0,0402	185,7
12	$p_{BO} = 0.16$, $l_{BO} = 90$	0,0413	189,9

0,393 / . ,

p _{eð} = 0,14 ,	, $l_{s\partial} = 50$ $l_{s\partial} = 14$	$3 - p_{ec}$ ($G_a = 0.399$	$W_{a} = 0.14$ $W_{a} = 18$, l ₆₀ = 4,6 /).	14 7 – , , -
$l_{g\partial} = 50$; $p_{_{\theta}\partial} = 0,14$,			,
	•				, -
					-
		,			2 -
		:		:	, , -
	2			•	
1, 1472.42.1814		. 2010.	. 42. 1.	. 65–69. https	://doi.org/10.18372/2306-
2	10 XLI, 3 6	9–81. https://doi.or	g/10.1615/TsA	GISciJ.v41.i3.	
3	.,	:		. 2019.	. 144 190–198.
 https://doi.org/l Huang B., Cha Vol. 22. No. 5. 1 Kong F., Kim H System. Int. J. H 	0.1540//geotm2019.1 <i>ing J., Wang C., Pet</i> Pp. 354–364. https://d <i>I.</i> Analytical and Cor leat Mass Transf. 201	144.190 <i>renko V.</i> A 1-D A loi.org/10.1016/S0 nputational Studie 5. Vol. 85. Pp. 71–	Analysis of Eje 140-7007(99)0 s on the Perfor 87.	ector Performar 0004-3 rmance of a Tw	ice. Int. J. Refrig. 1999. 70-Stage Ejector Diffuser
https://doi.org/10 6. <i>Gagan J., Sm</i> Application to C	D.1016/j.ijheatmasstra ierciew K., Butrymo Gas Ejectors. Int. J. Th	nsfer.2015.01.117 wicz D., Karwac erm. Sci. 2014. Vo	<i>ki J</i> . Compar ol. 78. Pp. 9–15	ative Study of	Turbulence Models in
https://doi.org/10 7. Garc a del V Computational 3 Gas Effects. Ap https://doi.org/10).1016/j.ijthermalsci.2 <i>'alle J., Sierra-Palla</i> Study of the Flow Pa pl. Therm. Eng. 2015. 0.1016/j.applthermale	2013.11.009 ures J., Garcia C tternin a Refrigeran Vol. 89. Pp. 795– ng 2015 06 064	Carrascal P., o nt Ejector. Val 811.	<i>Castro Ruiz F</i> idation of Turb	: An Experimental and ulence Models and Real-
8. Croquer S., Pol Numerical Benc	<i>ncet S., Aidoun Z.</i> Tu hmark. Int. J. Refrig.	urbulence Modeling 2016. Vol. 61. Pp.	g of a Single-F 140–152.	Phase R134a Su	personic Ejector. Part 1:
9. <i>Croquer S., Por</i> Local Flow	<i>structure and Ex</i>	rbulence Modeling ergy Analysis.	gof a Single-Ph Int.J. Refrig	nase R134a Su . 2016. Vol	personic Ejector. Part 2:
10. <i>Mazzelli F., L</i> Supersonic Air Vol. 56 Pp. 305	0.1016/j.ijrefrig.2015 <i>Little A.B., Garimell</i> Ejector: Turbulence	.07.029 a S., Bartosiewic Modeling and Ass 10.1016/i jiheatflui	z Y. Computation of 3D iddlow 2015 08	ational and E Effects. Int. J.	xperimental Analysis of Heat Fluid Flow, 2015.
11. Besagni G., I Turbulence M https://doi.org/1	<i>inzoli F.</i> Computation odeling Approaches 0.1016/j.applthermale	nal Fluid-Dynami Applied Therm	ics Modeling nal Engineeri	of Supersonic ng. 2017. V	Ejectors: Screening of ol. 117. P. 122–144.
12. <i>Menter F. R.</i> 1994. Vol. 32.	Гwo-Equation Eddy-V 8. Рр. 1598–1605. 1	/iscosity Turbulence https://doi.org/10.2	ce Models for 1 514/3.12149	Engineering Ap	plication. AIAA Journal.
13					ANSYS 17.

. 2017. 210 . 14. *Wilcox D. C.* Turbulence Modeling for CFD. Griffin Printing. 1993. 460 p.

 15.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

07.09.2020, 21.09.2020