O.V. PYLYPENKO, N.B. GOREV, A.V. DORONIN, I.F. KODZHESPIROVA

MOTION SENSING BY A TWO-PROBE IMPLEMENTATION OF MICROWAVE INTERFEROMETRY

This paper addresses the possibility of displacement measurement by microwave interferometry at an unknown reflection coefficient with the use of two probes mounted in a waveguide section. The aim of this paper is to show that the displacement measurement accuracy can be improved by using an interprobe distance other than its conventional value. The case of an arbitrary interpobe distance is considered. The measurement error as a function of the interprobe distance and the reflection coefficient is analyzed with the inclusion of variations of the currents of the semiconductor detectors connected to the probes from their theoretical values. The analysis has shown that as the interprobe distance decreases, the measurement error passes through a minimum for reflection coefficients close to unity and increases monotonically for smaller reflection coefficients. This behavior of the error is due to the fact that with decreasing interprobe distance and/or reflection coefficient the inherent error of two-probe measurements decreases, while the error caused by variations of the detector currents from their theoretical values increases. The interprobe distance is suggested to be one tenth of the guided operating wavelength λ_{g} . In comparison with the conventional interprobe distance of $\lambda_{g}/8$, the suggested value offers a marked reduction in the measurement error for reflection coefficients close to unity, while for smaller ones this error increases only negligibly. This is verified by experiment using both free-space and waveguide measurements. The results reported in this paper may be used in the development of microwave displacement sensors for various classes of vibration protection and workflow control systems.

Keywords: vibration, displacement, interferometry, probe, incident wave, reflected wave, semiconductor detector, detector current.

- 1. Viktorov V. A. Radiowave Measurements of Process Parameters (in Russian) / V. A. Viktorov, B. V. Lunkin, A. S.Sovlukov Moscow: Energoatomizdat, 1989. 208 p.
- Cunha A. Dynamic measurements on stay cables of stay-cable bridges using an interferometry laser system / A. Cunha, E. Caetano // Experimental Techniques. – 1999. – V. 23, No 3. – P. 38 – 43.
- Kaito K. Development of a non-contact scanning vibration measurement system for real-scale structures / K. Kaito, M. Abe, Y. Fujino // Stricture and Infrastructure Engineering. – 2005. – V. 1, No 3. – P. 189 – 205.
- Mehrabi A. B. In-service evaluation of cable-stayed bridges, overview of available methods, and findings / A. B. Mehrabi // Journal of Bridge Engineering. – 2006. – V. 11, No 6. – P. 716 – 724.
- 5. Lee J. J. A vision-based system for remote sensing of bridge displacement / J. J. Lee, M. Shinozuka // NDT & E International. - 2006. - V. 39, No 5. - P. 425 - 431.
- Kim S. A displacement measurement technique using millimeter-wave interferometry / S. Kim, C. Nguyen // IEEE Transactions on Microwave Theory and Techniques. – 2003. – Vol. 51, No. 6. – P. 1724 – 1728.
- Kim S. On the development of a multifunction millimeter–wave sensor for displacement sensing and low-velocity measurement / S. Kim, C. Nguyen // IEEE Transactions on Microwave Theory and Techniques. 2004. V. 52, No 11. P. 2503 2512.
- Two-probe implementation of mechanical motion sensing by microwave interferometry (*in Russian*) / O. V. Pylypenko, N. B. Gorev, A. V. Doronin, I. F. Kodzhespirova, E. N. Privalov // Tekhnicheskaya Mekhanika 2013. No 4. P. 112 122.
- Patent for Utility Model No 80300 Ukraine, IPC G01H 9/00. Motion and Vibration Sensing Method (*in Ukrainian*) / Pylypenko O. V., Gorev M. B., Doronin O. V., Kodzhespirova I. F., Privalov E. M.; applicant and patentee the Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the National Space Agency of Ukraine. u 2012 12694; filed 07.11.2012; published 27.05.2013, Bulletin No 10. 8 p.
- 10. Tischer F. J. Mikrowellen-Messtechnik / F. J. Tischer Berlin : Springer-Verlag, 1958. 368 p.
- Chavez S. Understanding phase maps in MRI: A new cutline phase unwrapping method / S. Chavez, Q.-S. Xiang, L. An // IEEE Transactions on Medical Imaging. 2002. V. 21, No 8. P. 966 977.
- Resolving phase ambiguity in the inverse problem of reflection-only measurement methods / U. S. Hasar, J. J. Barroso, C. Sabah, Y. Kaya // Progress in Electromagnetics Research. – 2012. – V. 129. – P. 405 – 420.
- Silvia M. T. Deconvolution of Geophysical Time Series in the Exploration for oil and Natural Gas / M. T.Silvia, E. A.Robinson. – Amsterdam – Oxford – New York : Elsevier Scientific Publishing Company, 1979. – 447 p.