

The methodical approach to the determination of the initial kinematics and geometrical characteristics of the fuel components droplet cloud derived from the liquid-propellant carrier rocket (CR) explosion at the atmospheric trajectory leg is developed. The phenomenological analogy of the transient-load damage processes in the fractured solids and a mass of a gas-saturated cavitation liquid is taken as a basis of the approach. The droplet cloud characteristics obtained by this means can be used as the reference data for calculating the subsequent transformation of the cloud when it moves in the gravitation field taking into account heat-mass exchange with an atmosphere, as well as for estimating the ecological risks in the ground area of the CR fallout.

•

[9];

,

; , , , , , , ,

- . .

:

$$M = (M_0 - \dot{m}_{\Sigma} \cdot \ddagger)(1 - K) .$$
 (3)

$$E_{\rm B} = M_{\rm B} \cdot E_{\rm C} \cdot f_{\rm C} . \tag{4}$$

;

[15]:

-

-

-

$$P = P_m \cdot e^{\frac{t}{r}}, \qquad (5)$$

,

 $P_m - , ; t - , ; , - , ;$

,

,

$$()$$

$$P_{m} = 5.3 \cdot 10^{7} \cdot \left(\frac{\sqrt[3]{M_{\rm BB} \cdot f}}{r}\right)^{1.09};$$
(6)

$$_{''} = 0,7 \cdot 10^{-4} \cdot (M_{\rm BB} \cdot f_{\rm })^{0,28} \cdot r^{0,17}, \qquad (7)$$

, .

, ,

6

r –

. [16]:

$$P_{\rm y} (R) = P_0 \cdot R^{-3},$$
 (8)

$$R -$$
, , P_0 (5) $t = r \cdot D^{-1}$ [16].
,
,
,
 2000° 2500° [8, 9],
,

•

• . •

-

, : 0,25 (

$$D = 44.6 \cdot \left(\frac{M_{\rm BB} \cdot f}{\dots_{\rm c} c_{\rm pc}}\right) \quad \cdot t^{0.5}, \tag{9}$$

..._c , c_{pc} – , ; ; *t* – , /: _

$$U = 26.5 \cdot \left(\frac{M_{\rm BB} \cdot f}{\dots_{\rm c} c_{\rm pc}}\right)^{0.25} \cdot t^{-0.5};$$
(10)

, : _

$$H = H_0 + 53 \cdot \left(\frac{M_{BB} \cdot f}{\dots_c c_{pc}}\right)^{0.25} \cdot t^{0.5}, \qquad (11)$$

, :

$$M_{\rm c} = 14,3 \cdot 10^3 \cdot \left(\frac{M_{\rm BB} \cdot f}{\dots_{\rm c} c_{\rm pc}}\right)^{0,75} \cdot (\dots \cdot \dots_{\rm c})^{0,5} \cdot t^{1,5}, \qquad (12)$$

,

.

... –

,

_

(12)

-

$$\overline{X}_{0} = 0,1 \cdot (M_{BB} \cdot f_{-})^{1/6} \cdot \left(\frac{1-K}{K \cdot \dots \cdot f_{-}}\right) \quad , \tag{14}$$

.

,

...

· -

, <u>-</u> , <u>-</u> [13].

 $... \ge 10^3$ / ³

$$D = K \sqrt{E \cdot f} , \qquad (15)$$

K 3,5 4,0.

,

,

..._c, ,

$$E_{\rm c} = V_{\rm \cdots_{c}} u^2 \frac{k+1}{2} \left[\left(\frac{R}{R_0} \right)^N - 1 \right], \tag{16}$$

$$k = 1,4 - ; V - ; u - ; u - ; K_0 - ; u$$

$$N - (N = 3)$$

 $R = R$
 $N = 2$ - $N = 2$

,

-

:

$$E = \frac{M_{\rm BB} \cdot u^2}{\mathbb{E}},\tag{17}$$

Œ–

[13, 20] . -

.

$$u \approx \frac{D}{2} \sqrt{\frac{\mathsf{S}}{2(1+2\mathsf{S}/\mathbb{E}\,)}}\,,\tag{18}$$

$$S = M_{BB} / M ,$$

$$, \qquad \qquad , \qquad \qquad , \qquad \qquad , \qquad \qquad D = 4 \sqrt{E_B} ,$$

$$u = \frac{D}{2}\sqrt{\frac{s}{2}}, \qquad (19)$$

(). , :
-
$$(\mathbb{E} = 10/3;$$

- $(\mathbb{E} = 4,$

(17)

$$u = D_{\sqrt{\frac{5s}{8(5+3s)}}};$$
 (20)

$$u = \frac{D}{2}\sqrt{\frac{s}{2+s}} .$$
 (21)

,
$$M > M_{BB}$$
,
, [13]

-

_

_

_

$$U = \frac{D}{4} \sqrt{\frac{15 \,\mathrm{s}}{2(5+3 \,\mathrm{s}\,)}} \left[1 - \left(\frac{R_0}{R}\right)^8 \right];$$
(22)

:

$$U = D_{\sqrt{\frac{\mathsf{S}}{5(2+\mathsf{S})} \left[1 - \left(\frac{R_0}{R}\right)^5\right]}}.$$
(23)

,

,

,

,

R,

,

,

[13],

$$R \le (1,6 \div 1,65) \cdot R_0, \quad . \quad .$$

 $U_{\text{max}};$

$$U_0 = (0.89 \div 0.92) \cdot U_{\text{max}}$$
 (24)

$$d = \overline{X}_0 \quad (\quad . \qquad \qquad , \qquad (15)). \qquad ,$$

[25]:

$$We = \frac{\dots_c U^2 d}{2^{\dagger}}, \qquad (25)$$

$$d - ; \dots - ; U -$$

We . ,
$$7 < We \le 8,5$$

, 100% ;
We > 8,5. [25, 26].

[26]:

$$t_{\rm p} = 10 \, \frac{d}{U} \, {\rm We}^{-0.25} \,.$$
 (26)

, _

,

:

$$\begin{array}{c} & & & & \\ - d_{3,1,5} - & & & \\ & & & \\ - d_{32} - & - & & \\ & & & \\ - d_{30} - & & & \\ \end{array}$$

[25];

$$d_{3,1,5} = 0,781 \cdot d$$
; $d_{32} = 0,677 \cdot d$; $d_{30} = 0,826 \cdot d$. (27)

$$U, \qquad \qquad U_0 \qquad U \quad [27]:$$

$$\frac{dU}{dt} = -C_D(\operatorname{Re}) \cdot \frac{3}{4d} \cdot \frac{\cdots_c}{\cdots} \cdot U^2. \qquad (28)$$

$$d = d_{3.1,5}$$
 t , (28)

$$C_D$$
 Re (- 25]:

12

,

•

$$\operatorname{Re} = \frac{\cdots_{c} |U| d}{\tilde{z}}, \qquad (29)$$

~ _

[25 – 27]:

•

Re (29) (28),

 f_D

 C_D

$$f_D = C_D \frac{\text{Re}}{24}.$$
(30)

 C_D

:

,

$$\frac{dU}{dt} = -18f_D \frac{\sim_c U}{\dots d^2}.$$
(31)

$$\delta T = \frac{\dots d^2}{18f_{D^{\sim}c}}, (31)$$

$$T \quad \frac{dU}{dt} = -U \ . \tag{32}$$

(31)

$$C_D = \frac{24}{\text{Re}}, \quad f_D = 1).$$
 (31)
 $U(0) = U_0, \quad x(0) = 0$:
(11)
(12)
(12)
(13)
(13)

$$U(t) = U_0 \exp\left(-\frac{t}{T}\right); \tag{33}$$

$$x(t) = T U_0 \left[1 - \exp\left(-\frac{t}{T}\right) \right].$$
(34)

$$U(t_{-}) = U_{-} < U_{0}, \qquad (33)$$

$$exp\left(-\frac{t_{-}}{T_{-}}\right) \qquad (34); \qquad :$$

$$x|_{U_{-}} = T_{-} U_{0}\left(1 - \frac{U_{-}}{U_{-}}\right) = T_{-} (U_{0} - U_{-}). \qquad (35)$$

$$x|_{U} = T \ U_{0} \left(1 - \frac{U}{U_{0}} \right) = T \ (U_{0} - U).$$
(35)

(34), (35) ,
$$U$$
 , U_0 .

$$U_0$$
.

1.

,

13

_

, 1 », 2011.641 . 2 3 , 1999. 332 . ÷ 4 1993. 4. . 36 – 45. 5 . ., . ., . ., 6 . ., . : , 2000. 640 . . . 1984. 5. . 126 – 129. 7 . . 8 : . . , 2002. . 157 – 172. 9 • •, 2000. 5. . 128 – 133. . . . 10 : · ., . ., . ., 11 -. .. , 2003. 288 . 12. . 1987. 5. . 134 – 139. 13 14 : , 1973. 416 . 15 . . : , 1974. 122 . 16 . ., . . -. . 2012. 12. . 74 – 78. 17 . ., . 1989. 3. . 21 – 28. 18 . ., 1986. 6. . 52 – 57. ., 19 . . 1972. 9. . 17 – 26. · ., . ., : ,1991.127 . 20 21 21 . ., . . 1980.256 . 22 . . . : , 23 Leighton T. G. The acoustic bubble. London : Academic Press, 1994. 633 p.

 25 Leignion 1. G. The acoustic bubble. London : Academic Press, 1994. 633 p.

 24
 ...,
 ...,
 ...,
 ,...,
 ,...,

 25
 ...,
 ...,
 ...,
 ,...,
 ,...,
 ,...,

 26
 ...,
 ...,
 ...,
 ...,
 ,...,
 ,...,
 ,...,

 26
 ...,
 ...,
 ...,
 ...,
 ...,
 ,...,
 ,...,

 26
 ...,
 ...,
 ...,
 ...,
 ...,
 ...,
 ,...,

 27
 ...,
 ...,
 ...,
 ...,
 ...,
 ...,
 ...,

 27 : . . : . -• • , 2013. 431 .

,

2.

;

15.02.2017, 14.03.2017