

solid-propellant sustainer engines and identifies the features and requirements for flight trajectories, design parameters, and control programs. Within the framework of the optimal control theory, the comprehensive problem of simultaneous optimization of a missile's design parameters and control systems is formulated. An approach to the formation of missile flight control programs in the form of polynomials is developed further, thus making it possible to reduce the optimal control theory problem to a simpler problem of nonlinear mathematical simulation. The proposed approach to control program development is used at the initial design stage to form a wide range of guided missile trajectories. Use is made of a methodology for the ballistic and aeroballistic flight range optimization of the design parameters and flight control programs of a canard missile. The missile flight range depends essentially on the values of the design and trajectory parameters and control programs chosen for optimization. Because of this, the optimization of the chosen parameters (maybe, other parameters too) in the solution of specific target problems seems to be the indispensable initial stage of missile design. For the considered missile trajectories with a vertical launch where the Mach number takes different values, optimal programs of pitch time variation that maximize the flight range are determined. The analysis of the optimization results for different trajectories shows that the optimal program in active flight with a vertical launch is the linear time dependence of the pitch angle. The application package developed allows one to determine flight control programs optimal in a given class of functions and advisable design parameters and basic performance characteristics of guided missiles for various aerodynamic designs and flight schemes as early as at the initial design stage to an accuracy required for design studies. This makes it possible to analyze design alternatives, thus improving the quality of solution of problems arising at the initial design stage and reducing the time and the cost of design work on new missiles.

Keywords: guided missile, solid-propellant sustainer engine, initial design stage, design parameters, trajectory parameters, flight control programs, objective functional, optimization methodology.

. - 2023. - 3.

© . . - ,2023

[1], [2], [5] - [3], [4]. [1] - [5] ,

, -, , , .

-. ().

[5], [6], : , ,

, . , , _ ,

« », ---

-, -

,

, (\overline{p}) : v_p , μ_k, : $v_p = \frac{m_0 \cdot g_0}{P_{pust}}; \quad \mu_k = \frac{m_0 - m_m}{m_0} = \frac{m_k}{m_0},$; g₀ – m_0 , m_k – ; P_{pust} ; m_m – , <u>p</u> : , D_a , p_k , β_a, K_{pd} , t_{Σ} , v_p . $, \ \overline{p} \, ,$ t_{vert} : φ*_{cm}*; ; $\varphi_{AYT};$ α j $\overline{u}=\overline{u}(\overline{p},t)$: $\phi_{np \ j} \left(\overline{p}, \overline{y}, t \right)$ \overline{y} –) (; $P_{np}\left(\overline{p},t\right)$ $\dot{m}_{c}\left(\overline{p},t\right)$ • : $u_{np j}\left(\overline{p}, \overline{y}, t\right) = \sum_{i=0}^{n} A_{ji}\left(\overline{p}, \overline{y}\right) \cdot t^{i},$ (1)

;

$$\overline{y}$$
,

 \overline{p} .

 $\overline{p}=\overline{p}_{opt}\,,$

_

_

_

_

;

,

,

•

:

,

:

-

,

$$I(\overline{p}_{opt}, \overline{x}) = \max_{\overline{p}} L(\overline{p}, \overline{x})$$
⁽²⁾

 \overline{x} :

,

-

_ _

$$\overline{p} \in \widetilde{P}^m \subset P^m, \quad \overline{x} \in \widetilde{X}^k \subset X^k;$$
:
(3)

$$t_{vert} = t_{vert}^{mp}; \quad H_{\max} = H_{\max}^{mp}, \quad Q_{H_{\max}} \ge Q_{H_{\max}}^{\min}, \quad \alpha \le \alpha_{\max},$$

$$\varphi_c = \varphi_c^{mp}; \quad \frac{d\overline{y}}{dt} = f(\overline{y}, \overline{x}, \overline{p}); \quad \overline{y} \in \widetilde{Y}^s \subset Y^s \qquad (4)$$

:

$$m_0(\overline{x},\overline{p}) = m_0^{mp}, \quad m \quad (\overline{x},\overline{p}) = m^{mp},$$

$$L = L^{mp}, \quad L = L^{mp}, \quad D \quad (\overline{x},\overline{p}) = D^{mp}, \quad D_a(\overline{x},\overline{p}) = D_a^{mp}.$$
(5)

$$\overline{x} = (x_i), i = \overline{1, k} - ,$$

$$X^k; \ \overline{p} = (p_i), i = \overline{1, m} - ,$$

$$(\qquad \qquad),$$

$$P^m; \ \widetilde{P}^m, \widetilde{X}^k -$$

$$P^{m}, X^{k}, \qquad \qquad \overline{p}, \overline{x}, \qquad -$$

$$\overline{y} = (y_{i}), i = \overline{1, s} - \qquad ,$$

$$Y^s; \ \widetilde{Y}^s - -$$

 $Y^s, \qquad \overline{y};$

$$t_{vert}, t_{vert}^{mp} - -$$

$$; H_{max}, H_{max}^{mp} -$$

$$; Q_{H_{max}}, Q_{H_{max}}^{min} - -$$

$$H = H_{max}; \alpha, \alpha_{max} -$$

$$m_0(\overline{x}, \overline{p}), m_0^{mp} - ;$$

$$m_0(\overline{x}, \overline{p}), m^{mp} - ();$$

 $\varphi_{j}(t)$

$$\varphi$$
 $(t) = const = \frac{\pi}{2}$.
 $n = 1, \qquad n = 2 \qquad n = 3$
 φ $(t) = \sum_{i=0}^{n} A_i \cdot t^i$. (6)

,

 φ_{cm} .

,
$$A_i$$
, $i = \overline{0, n}$, (6).
 $t = t_{vert}$
:
 $\varphi_{vert} = \frac{\pi}{2}$,
 $\frac{d\varphi}{dt} = 0$,
.

-

 $\phi_{\textit{vert}}$ –

$$\phi_{vert}$$

$$t = t$$
 , t –
:
 $\phi = \phi$

$$\alpha = 0,$$

φ –

,

$$\overline{p}, \qquad ; \alpha - A_0, A_1 \quad (6) \qquad : \qquad \\ \left[A_0 + A_1 \cdot t_{vert} = \phi_{vert}; \right]$$

$$\begin{cases} A_0 + A_1 \cdot t &= \phi^{mp} \\ A_0 = \phi_{vert} - A_1 \cdot t_{vert}, \\ A_1 = \frac{\phi_{vert} - \phi^{mp}}{t_{vert} - t}. \end{cases}$$

(6)

,

•

,

 $A_i, i = \overline{0,2}$:

,

:

,

.

-

$$\begin{cases} A_0 + A_1 \cdot t_{vert} + A_2 \cdot t_{vert}^2 = \varphi_{vert}, \\ A_1 + 2 \cdot A_2 \cdot t_{vert} = 0, \\ A_0 + A_1 \cdot t + A_2 \cdot t^2 = \varphi^{mp} \end{cases}$$

$$A_{0} = \varphi_{vert} - (A_{1} \cdot t_{vert} + A_{2} \cdot t_{vert}^{2}),$$

$$A_{1} = -2 \cdot A_{2} \cdot t_{vert},$$

$$A_{2} = \frac{\varphi_{vert} - \varphi^{mp}}{\left(t_{vert}^{2} - t^{2}\right) - 2 \cdot t_{vert} \cdot \left(t_{vert} - t\right)}.$$
(6)
$$A_{i}, i = \overline{0,3}:$$

$$\begin{cases} A_0 + A_1 \cdot t_{vert} + A_2 \cdot t_{vert}^2 + A_3 \cdot t_{vert}^3 = \varphi_{vert}, \\ A_1 + 2 \cdot A_2 \cdot t_{vert} + 3 \cdot A_3 \cdot t_{vert}^2 = 0, \\ A_0 + A_1 \cdot t + A_2 \cdot t^2 + A_3 \cdot t^3 = \varphi^{mp} \end{cases}$$

(

 $A_3)$

25	
23	

:

L =2,992 , L =0,867 , L =2,125 . , $D_{UO} = 0,410$. : , $[0,07 \le v_p \le 0,23];$, $[65 / ^2 \le p_k \le 100 / ^2];$ $[0,33 \leq D_a \leq 0,39].$, m_0 т m_m μ_k , t v_p . , : 1 -; 2 – ; 3 – 4 – ; ~ ». , 1 (-): $\phi_{\textit{vert}}=90^\circ$ t_{vert} ; _ n = 1, n = 0n = 2, *n* = 3 A_i , $i = \overline{0, n}$ (6) ; φ (1), ____ _ $\alpha_1 = 0$ $t_1;$ 2) (-_ $H_{\rm max}$, $\alpha_{2} = 0;$

	,		M=[6÷7]
-			
φ	[32÷45]	34,27	-
t 1	[5÷15]	5	- 1
L	359	,995	

2 (

n = 2,

 $_{1} = 0$

-

_

_

_

_

2.

M=[6÷7	

		,	M=[6÷7]
φ	[32÷45]	34,27	
t 1	[5÷15]	5	1
t ₃	[5÷50]	30	3
L	276	,434	

 $= \phi_{vert} = 90^{\circ}$ φ t_{vert} ; n = 1, (6) (1), n = 0n = 3n=2, φ _ -, $_{1} = 0$ α *t* ₁;

$$Q_{H_{\text{max}}}^{\min} = 50 / 2;$$
 (3),
- (3),
 $\alpha_{3} = 0$

$$\alpha _{4} = \alpha _{3} \qquad H _{4};$$

- ' (5),

$$H = 1$$
 .

29

-

			M=[6÷7]	
-				
	[32÷45]	34,27		
	[5÷15]	5		1
	[10÷20]	15	3	
	[5÷50]	30		3

15

50

L		41	8,491					
»):				4 (
q _	$p_{vert} = 90^{\circ}$			t _{vert}	; φ	;		
_			α 1	1 = 0 1); (2)	t	1	
H Q	I_{\max} $\prod_{H_{\max}}^{\min} = 50$	/ 2;		0				
_			α	$_{3} = 0$ (3) (; 4)		t 3	
_	,	α $_5 =$	$_4 = 0$ α_{const}	(5) t	$H = \frac{1}{4}$, onst	
_		V ₆ ;		(6) 7)			
V = -90°	6	t	$_7 = t_{\varphi_c};$,	0)			
_	φ	=-90°		(8)		H =1	4.

4

«

»

30

φ

-

1

3

3

4

5

[5 ÷20]

[15÷60]

φ

t

α

t

H

t

«

,

-

-

-

M=[6÷7]

		,	M=[6÷7]	
φ,.	[32÷45]	34,27		-
t 1, c	[5÷15]	5	1	
t 3, c	[5÷12]	5	3	
$H_4,$	[25÷54]	53,9	4	-
$\alpha \qquad {}_{5} = \alpha_{const} ,$	[7÷14]	11	5	
$t \qquad 5 = t_{\alpha_{const}},$	[5÷20]	5	5	
$t \qquad _7 = t_{\varphi_c}$, c	[45÷70]	62		
<i>L</i> ,	42	7,702		

.5 –7

.1 – 3

,

5

L (),

M=[6÷7]

•

	$\varphi(t) = \sum_{i=0}^{1} A_i \cdot t^i$	$\varphi(t) = \sum_{i=0}^{2} A_i \cdot t^i$	$\varphi(t) = \sum_{i=0}^{3} A_i \cdot t^i$
1	359,995	342,862	335,045
2	276,434	248,329	239,587
3	418,491	367,954	363,320
4	427,702	378,315	374.194

L (),

M=[5÷6]

	$\varphi(t) = \sum_{i=0}^{1} A_i \cdot t^i$	$\varphi(t) = \sum_{i=0}^{2} A_i \cdot t^i$	$\varphi(t) = \sum_{i=0}^{3} A_i \cdot t^i$
1	217,135	207	194,049
2	220,930	207,647	197,710
3	278,106	262,453	249,804
4	282,167	265,920	251,404

M=[5÷6]

M=[3÷4]

7

	$\varphi(t) = \sum_{i=0}^{1} A_i \cdot t^i$	$\varphi(t) = \sum_{i=0}^{2} A_i \cdot t^i$	$\varphi(t) = \sum_{i=0}^{3} A_i \cdot t^i$
1	66,532	59,872	52,452
2	54,785	54,058	50,163
3	59,716	59,342	57,699
4	73,320	70,536	68,932

.

,

. ,

. 3 –

M=[3÷4]

,

•

,

»

_

*
(6541230) 2023 – 2024 ».
1
: - , 2014. 420 . 2 ,
: _ ,2004.544 .
 Tewari Ashish. Advanced control of aircraft, spacecraft and rockets. Kanpur: John Wiley & Sons Publ. 2011. 456 pp. https://doi.org/10.1002/9781119971191
 Fleeman Eugene L. Tactical missile design. Second Edition. Lilburn, Georgia: AIAA Education series. 2006. 469 p.
5
:
168 .
6,,,,, -
· · · ·
-
https://doi.org/10.33136/stma2018.02.101 2 (116). 101–116. 7. Catalogue. China: Aerospase Long-march International, February. 2017. 136 p. : website. June 20, 2020
 2018. 2 (116). 101–116. https://doi.org/10.33136/stma2018.02.101 7. Catalogue. China: Aerospase Long-march International, February. 2017. 136 p. 8
 2018. 2 (116)101–116. https://doi.org/10.33136/stma2018.02.101 7. Catalogue. China: Aerospase Long-march International, February. 2017. 136 p. 8
2018. 2 (116) 101–116. https://doi.org/10.33136/stma2018.02.101 7. Catalogue. China: Aerospase Long-march International, February. 2017. 136 p. 8
 2018. 2 (116)101–116. https://doi.org/10.33136/stma2018.02.101 7. Catalogue. China: Aerospase Long-march International, February. 2017. 136 p. 8. : website. June 20, 2020 URL: https://defence- ua.com/weapon_and_tech/jak_v_ukrajini_stvorjuvalis_operativno_taktichni_raketni_kompleksi-1022.html (Last accessed: 11.09.2023). 9. Lockheed Martin's GMLRS+ Completes Successful Test Flight of Long-Range Motor. Lockheed Martin Corporation: website. Aug. 9, 2011 URL: https://news.lockheedmartin.com/2011-08-09-Lockheed-Martins- GMLRS-Completes-Successful-Test-Flight-of-Long-Range-Motor (Last accessed: 15.09.2023).
 2018. 2 (116)101–116. https://doi.org/10.33136/stma2018.02.101 7. Catalogue. China: Aerospase Long-march International, February. 2017. 136 p. 8. : website. June 20, 2020 URL: https://defence- ua.com/weapon_and_tech/jak_v_ukrajini_stvorjuvalis_operativno_taktichni_raketni_kompleksi-1022.html (Last accessed: 11.09.2023). 9. Lockheed Martin's GMLRS+ Completes Successful Test Flight of Long-Range Motor. Lockheed Martin Corporation: website. Aug. 9, 2011 URL: https://news.lockheedmartin.com/2011-08-09-Lockheed-Martins- GMLRS-Completes-Successful-Test-Flight-of-Long-Range-Motor (Last accessed: 15.09.2023). 10. Senkin V. S., Syutkina-Doronina S. V. On the Issue of Choice of the Parameter Optimization Method for a Guided Missile. Science and Innovation. 2020. Vol. 16(3). P. 50–64. https://doi.org/10.15407/scine16.03.050
 2018. 2 (116)101–116. https://doi.org/10.33136/stma2018.02.101 7. Catalogue. China: Aerospase Long-march International, February. 2017. 136 p. 8
 2018. 2 (116)101–116. https://doi.org/10.33136/stma2018.02.101 7. Catalogue. China: Aerospase Long-march International, February. 2017. 136 p. 8

•

18.08.2023, 29.09.2023

-

-