· · · · , · · · , · ·

The study of the features of near-Earth space industrialization is a promising line in space science. The scientific development of this line is rather deep, and it is carried out both at a theoretical conceptual level and at an experimental level by trying various technological processes onboard the International Space Station. One of the lines of this concept is the study of the features of designing a power system for a space industrial platform. The power system is of the distributed type, which provides for the combined use of power generation modules onboard the space industrial platform itself and an orbital constellation of power spacecraft. In its turn, the use of power spacecraft with contactless electric power transmission to a space industrial platform is intended for highly power-intensive technological processes.

In view of the aforesaid, the goal of this paper is to study the features of controlling the power spacecraft of the distributed power supply system of a space industrial platform in such a way as to provide the synchronization of their operating modes with the operation sequence of the space industrial platform. A power spacecraft's angular motion controllers are synthesized for a solar battery charging mode, a receiving spacecraft aperture pointing mode, and a waiting mode. Methodological recommendations are given on synthesizing the operation schedules of the power spacecraft of the distributed power supply system in such a way as to provide their synchronization with the operation schedules of the space industrial platform. The design parameters to be chosen in designing spacecraft for contactless power transmission to a space industrial platform are identified.

Keywords: space industrial platform, power spacecraft, operation schedule, angular motion control system, contactless power transmission.

2)	4 10×15 ·		(5–10) ,
3) 2,2 .	10×13 ;	50,	
(NASA) Concept» 10 150 ²	[2].		«Solar Power Satellite
2,4:	, 5		1
		:	, :
2) 3)		;	«SSPS-
OMEGA» [3].	:		, , , –
OMEGA»		,	. «SSPS- 2050 .
, ,	2		-
[1-3]		().	- - ,
- ()	,	:	
;	:		-
_			, ; , -
, , . ,			-
		-	. , [4]
« » 1,33 .		2	, - , ,

300 . , [5] ,

20	· · · · · · · · · · · · · · · · · · ·	
(, .)	
	, . :	
_	- · · · · · · · · · · · · · · · · · · ·	
-	(housekeeping systems) [6];	
_	· ,	-
	,	-
		-
1	:	
1)	-
2	;)	-
3	;	
	, ,	
	· •	
,	,	_
	· · · · · · · · · · · · · · · · · · ·	
,	GUI (graphic user interface) # ++.	-
	++. ++ dll	
	,	-
	r. 1,	

DRAMA-ESA GMAT.

--[7] •

-• , _ • •

[8]

17

,

$$\int_{t_1}^{t_2} P_{sup} dt - \int_{t_1}^{t_2} P_{sum} dt \ge W_{\kappa p}, \qquad (1)$$

$$P_{sup.} -$$
 , - , - , ; $P_{sum} -$, ; $W_{\kappa p.} -$, ; $t_1 -$; $t_2 -$.

; $t_2 -$

,

(1), -

_

_

(1). : -(1)

$$\sum_{i=1}^{n} \int_{t_{\alpha}}^{t_{\beta}} P_{\kappa ea}^{i} dt + \int_{t_{1}}^{t_{2}} P_{sup} dt - \int_{t_{1}}^{t_{2}} P_{sum} dt \ge W_{\kappa p}, \qquad (2)$$

.

) Safe Mode [10].

,

1		2		3
Target Charging Mode	4		-	PID :
	*	4	». 4	$\begin{split} M_{\kappa p \mu_{\star}}^{\kappa e p} &= \cdot \left(J_{xx} + J_{xy} + J_{xz}\right) \left(K_{1} \Delta \omega_{x} + K_{2} \Delta q_{x} + K_{3} \int \Delta q_{x} dt\right), \\ M_{m z}^{\kappa e p} &= \cdot \left(J_{yx} + J_{yy} + J_{yz}\right) \left(K_{1} \Delta \omega_{y} + K_{2} \Delta q_{y} + K_{3} \int \Delta q_{y} dt\right), \\ M_{p c \kappa_{\star}}^{\kappa e p} &= \cdot \left(J_{zx} + J_{zy} + J_{zz}\right) \left(K_{1} \Delta \omega_{z} + K_{2} \Delta q_{z} + K_{3} \int \Delta q_{z} dt\right). \end{split}$
				[11]:
				$m_{RW.1}^{\kappa ep.} = \frac{1}{4} \left(-\frac{1}{\sin \delta \cos \gamma} M_{\kappa p\mu.}^{\kappa ep} + \frac{1}{\sin \delta \sin \gamma} M_{m\mu.}^{\kappa ep} - \frac{1}{\cos \delta} M_{pc\kappa.}^{\kappa ep} \right),$
				$\mathbf{m}_{RW.2}^{\kappa ep} = \frac{1}{4} \left(-\frac{1}{\sin \delta \cos \gamma} M_{\kappa p \mu}^{\kappa ep} - \frac{1}{\sin \delta \sin \gamma} M_{m \mu e}^{\kappa ep} - \frac{1}{\cos \delta} M_{p c \kappa}^{\kappa ep} \right),$
				$\mathbf{m}_{RW.3}^{\kappa ep} = \frac{1}{4} \left(-\frac{1}{\sin \delta \cos \gamma} M_{\kappa p \mu}^{\kappa ep} - \frac{1}{\sin \delta \sin \gamma} M_{m \mu z}^{\kappa ep} + \frac{1}{\cos \delta} M_{p c \kappa}^{\kappa ep} \right),$
				$\mathbf{m}_{RW.4}^{\kappa ep} = \frac{1}{4} \bigg(-\frac{1}{\sin \delta \cos \gamma} M_{\kappa p \mu}^{\kappa ep} + \frac{1}{\sin \delta \sin \gamma} M_{m \mu \epsilon}^{\kappa ep} + \frac{1}{\cos \delta} M_{p c \kappa}^{\kappa ep} \bigg).$
Sun	4		-	PID
Acquisiti on Mode			-	, Target Charging Mode
	«	4	». 3	[11]. , 1,2 3 :
				$\mathbf{m}_{RW.1}^{\kappa ep.} = \frac{1}{2} \left(-\frac{1}{\sin \delta \cos \gamma} \boldsymbol{M}_{\kappa p \mu.}^{\kappa ep} + \frac{1}{\sin \delta \sin \gamma} \boldsymbol{M}_{\mu \mu e.}^{\kappa ep} \right),$
				$\mathbf{m}_{RW.2}^{\kappa ep.} = \frac{1}{2} \left(-\frac{1}{\sin \delta \sin \gamma} M_{muc.}^{\kappa ep} - \frac{1}{\cos \delta} M_{pc\kappa.}^{\kappa ep} \right),$
				$\mathbf{m}_{RW.3}^{\kappa ep.} = \frac{1}{2} \left(-\frac{1}{\sin \delta \cos \gamma} M_{\kappa p \mu.}^{\kappa ep} + \frac{1}{\cos \delta} M_{pc\kappa.}^{\kappa ep} \right).$
Safe	3		-	-
Mode				$\begin{aligned} \text{PID-} & : \\ M_{\kappa p \mu}^{\kappa e p} = - \left(\boldsymbol{J}_{xx} + \boldsymbol{J}_{xy} + \boldsymbol{J}_{xz} \right) \left(\boldsymbol{K}_{1} \Delta \boldsymbol{\omega}_{x} + \boldsymbol{K}_{2} \Delta \boldsymbol{q}_{x} + \boldsymbol{K}_{3} \int \Delta \boldsymbol{q}_{x} dt \right), \end{aligned}$
				$M_{me.}^{\kappa ep} = - \left(J_{yx} + J_{yy} + J_{yz}\right) \left(K_1 \Delta \omega_y + K_2 \Delta q_y + K_3 \int \Delta q_y dt\right),$
				$M_{pc\kappa.}^{\kappa ep} = - \left(J_{zx} + J_{zy} + J_{zz}\right) \left(K_1 \Delta \omega_z + K_2 \Delta q_z + K_3 \int \Delta q_z dt\right).$
				[12]:

1	2	3		
Safe Mode	3 -	$ \begin{split} M_{\kappa p \mu_{-}}^{\mathcal{M}, \mathcal{S} \mathcal{G}} &= \mathrm{sgn}(m_{y}) \cdot m_{y} \cdot B_{z} \cdot L_{2} - \mathrm{sgn}(m_{z}) \cdot m_{z} \cdot B_{y} \cdot L_{1}, \\ M_{m \varepsilon^{-}}^{\mathcal{M}, \kappa e p} &= \mathrm{sgn}(m_{z}) \cdot m_{z} \cdot B_{x} \cdot L_{1} \Leftrightarrow m_{z} = \frac{M_{m \varepsilon^{-}}^{\kappa e p}}{B_{x}}, \\ M_{p c \kappa^{-}}^{\mathcal{M}, \kappa e p} &= -\mathrm{sgn}(m_{y}) \cdot m_{y} \cdot B_{x} \cdot L_{2} \Leftrightarrow m_{y} = \frac{M_{p c \kappa^{-}}^{\kappa e p}}{B_{x}}, \\ M_{\mu c \kappa^{-}}^{\mathcal{M}, \kappa e p} &= -\mathrm{sgn}(m_{z}) \cdot m_{z} \cdot B_{y} \cdot L_{3} \Leftrightarrow m_{z} = \frac{M_{\kappa p \mu^{-}}^{\kappa e p}}{B_{y}}, \\ M_{m \varepsilon^{-}}^{\mathcal{M}, \kappa e p} &= \mathrm{sgn}(m_{z}) \cdot m_{z} \cdot B_{x} \cdot L_{3}, \\ M_{\mu c \kappa^{-}}^{\mathcal{M}, \kappa e p} &= 0, \\ \end{split} $		
		$ \begin{split} M_{\kappa p \mu.}^{\mathcal{M}, \kappa e p} &= 0, \\ M_{m x^{2}.}^{\mathcal{M}, s \delta} &= -\operatorname{sgn}(m_{x}) \cdot m_{x} \cdot B_{z} \cdot L_{4}, \\ M_{p c \kappa.}^{\mathcal{M}, \kappa e p} &= \operatorname{sgn}(m_{x}) \cdot m_{x} \cdot B_{y} \cdot L_{4} \Leftrightarrow m_{x} = \frac{M_{p c \kappa.}^{\kappa e p}}{B_{y}}, \\ \end{bmatrix} \to \operatorname{lp-III} \\ M_{p c \kappa.}^{\mathcal{M}, \kappa e p} &= \operatorname{sgn}(m_{y}) \cdot m_{y} \cdot B_{z} \cdot L_{5} \Leftrightarrow m_{y} = \frac{M_{\kappa p \mu.}^{\kappa e p}}{B_{z}}, \\ M_{m x^{2}.}^{\mathcal{M}, \kappa e p} &= -\operatorname{sgn}(m_{x}) \cdot m_{x} \cdot B_{z} \cdot L_{6} \Leftrightarrow m_{x} = \frac{M_{m z^{2}.}^{\kappa e p}}{B_{z}}, \\ M_{m x^{2}.}^{\mathcal{M}, \kappa e p} &= \operatorname{sgn}(m_{x}) \cdot m_{x} \cdot B_{y} \cdot L_{6} - \operatorname{sgn}(m_{y}) \cdot m_{y} \cdot B_{x} \cdot L_{5}, \\ \end{split} $		
		$ m_x \le m_{\max},$ $ m_y \le m_{\max},$ $ m_z \le m_{\max}.$: $[p-I \text{ if } 2k - 10 \le T < 2k,$		
		$switch = \begin{cases} lp-II & \text{if } 2k \le T < 2k+5, \\ lp-III & \text{if } 2k+5 \le T < 2k+10, \\ lp-IV & \text{if } 2k+10 \le T < 2k+20, \end{cases}$ $k = 15, 30, 45, 60\frac{30 \cdot n}{2}, \\n = 1, 2, 3, 4n_{end}.$		
		1 : $M_{\kappa p \mu}^{\kappa e p}$, $M_{m r}^{\kappa e p}$, $M_{p c \kappa}^{\kappa e p}$ -		
•I •I	_	,		
$\Delta \omega_x, \ \delta \omega_y $, $\Delta \omega_z$ –	,		
; Δq_x , Δq_y , Δq_z –				
		; $K_1, \ K_2, \ K_3$ –		

PID- ;
$$m_{RW,1}^{kep}$$
, $m_{RW,2}^{kep}$, $m_{RW,3}^{kep}$, $m_{RW,4}^{kep}$ -

	,		-		;δ,γ	_	
	-	,		[11];	М ^{м.кер} крн.	, М ^{м.кер} тг.	, $M_{pc\kappa}^{M.\kappa ep}$ –
				,			; $M_{\kappa p \mu_{\perp}}^{M.36}$,
$M_{mir}^{M.3}$	$M_{pc\kappa}^{M.30}$ –			,			
,				[13]; B _x	B_y, B_y, I	$B_z -$	
				,			$[7]; m_x,$
m_y ,	m_z –						, -
				; m_{1}	max —		. 7
L	L. L. L.	L	,				; <i>L</i> ₁ ,
- 2,	-3, -4, -5,	; sgn() –		signur	n; <i>n</i> –		-
(-		-			
		T	\Rightarrow =	$\Rightarrow \Rightarrow V$); n_{end}	-)1)	
	,	<i>I</i> – ,		(1	- (PID-	K_{1}
K_2 ,	K ₃						1 '
-	U U						-
							-
	-		-	:			
		- 70	056130,0	;		- 0,001;	_
70	;		60	- 140	;		_
60	_		- 00	:			
		- 70	056030,0	;		- 0,001;	_
70	;		0	- 140	;		_
00	_		-0	•		:	
			-	- 1000	;		
			-	- 1500	;		
						-	$-10^{-2};$
						-	-13 . -
		-	:				
30			-	:			_
30	,		-	- 30	,		_
40	,			-20			
		- 10	•				
	- 1	2023 .					
		(. 1)				-
		1 2					
		1 2.					

. 1 -

6-, 2 02 2023 . : 1) 43200 Safe (. 1). 02 2023 00:00:00 -2023 12:00:00. UTC0. 02 2) 43201 Sun Acquisition 94000 . 02 2023 12:00:01 -04 2023 02:06:40. UTC0. Target Charging Mode. 3) 180400 -220000 , _ UTC0: 04 2023 39600 . 02:06:41 04 2023 13:06:41. : Safe: : 3 $m_{\rm max} = 50^{2};$ PID $K_1 = 0,0648, K_2 = 4,5, K_3 = 5,8 \cdot 10^{-8};$: $L_1 = 0,9$; $L_2 = 1,0$; $L_3 = 0,95 \; , \; L_4 = 0,95 \; , \; L_5 = 0,95 \; , \; L_6 = 0,8 \; .$ Sun Acquisition: : 4 3 4; 0,2 ²; 0,7 PID : $K_1 = 1,5, K_2 = 15, K_3 = 10^{-6};$ PID : $K_1 = 0,1, K_2 = 2, K_3 = 10^{-7};$: $\delta = 45^{\circ}$, $\gamma = 55^{\circ}$. - Target Charging Mode: : 4 0,2 4 4; ²; 0,7 PID $K_1 = 5, K_2 = 25, K_3 = 10^{-7};$

25

:

housekeeping -

Sun

Acquisition (. 3 . 6),

Sun Acquisition

, -, -, , -

1: , -2:

· · (), , -, , , . / , .

,

5: -

6: , , . 7:

-

1. Sasaki S. SSPS development road map. IAC- 09.C3.1.4. 2009.

URL: http://www13.plala.or.jp/spacedream/PDFSPSENG12.pdf

2. Landis G. A. Solar Power Satellites. Comprehensive Renewable Energy. 2012. Vol. 1. P. 767-774. https://doi.org/10.1016/B978-0-08-087872-0.00137-2

3. Yang Y., Zhang Y., Duan B., Wang D., Li X. A novel design project for space solar power station (SSPS-OMEGA). Acta Astronautica. 2016. Vol. 121. P. 51-58. https://doi.org/10.1016/j.actaastro.2015.12.029

4. Bergsrud C., Straub J. A space-to-space microwave wireless power transmission experiential mission using small satellites. Acta Astronautica. 2014. Vol. 103. P. 193-203. https://doi.org/10.1016/j.actaastro.2014.06.033

5. Aditya B., Hongru C., Yasuhiro Y., Shuji N., Toshiya H. Verify the Wireless Power Transmission in Space using Satellite to Satellite System. International Journal of Emerging Technologies. 2021. Vol. 12(2). P. 110-118.

6. Eickhoff J. Simulating spacecraft systems. Springer-Verlag Berlin Heidelberg. 2009. 360 p. https://doi.org/10.1007/978-3-642-01276-1

7. Palii O. S., Lapkhanov E. O., Svorobin D. S. Model of distributed space power system motion control. Technical mechanics. 2022. No. 4. P. 35-50. https://doi.org/10.15407/itm2022.04.035 8.

. 2022. 2. . 123-136. https://doi.org/10.15407/itm2022.02.123 9. Blanchard B. S., Fabrycky W. J. Systems engineering and analysis. Pearson Education Limited. 2014. 841 p.

10. ECSS-E-ST-60-30C. Satellite attitude and orbit control system (AOCS) requirements. Requirements & Standards Division Noordwijk, The Netherlands. 2013. 52 p. 11. . ., . ., . .,

«

- »

2.

2013. . 134. . 9 – 14.

. .

12. Alpatov A., Dron' M., Golubek A., Lapkhanov E. Combined method for spacecraft deorbiting with angular stabilization of the sail using magnetorquers. CEAS Space J. 2022. No. 4. P. 613-625. https://doi.org/10.1007/s12567-022-00469-6

13.

. . 2016.488 .

30.11.2023, 06.12.2023

».