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Аналітичний пошук первісних функцій (невизначених інтегралів) широко використовується в мате-
матичному моделюванні різноманітних технічних, економічних, екологічних, біологічних, соціальних та
інших процесів. У свою чергу, в задачах механіки є значний клас підзадач, при розв’язанні яких викорис-
товуються аналітичні методи інтегрування. До цих задач також відноситься проблема розробки аналітич-
них моделей навігаційно-балістичного забезпечення та моделей теорії керування в галузі ракетно-
космічної техніки. Перевагою цього підходу в математичному моделюванні є можливість швидкого аналі-
зу стану динамічних систем на різних часових інтервалах без розрахунків всіх попередніх станів.

У свою чергу, для деяких класів функцій існує кілька різних варіантів пошуку первісних, у результа-
ті чого існує кілька різних форм первісних, які важко перевірити класичним способом у стандартній фор-
мі. В основному це пов'язано з вибором різноманітних комбінацій методів інтегрування, які використову-
ються при розробці аналітичних моделей, зокрема в задачах прикладної механіки.

Враховуючи зазначені складнощі верифікації множини первісних функції, у роботі пропонується
метод, заснований на використанні кореляційного аналізу для перевірки відповідності їх аналітичних
форм. При цьому масиви значень кожної первісної форми функції у певних вузлових точках пропонується
представити у вигляді набору випадкових величин. З огляду на це, процес верифікації пропонується про-
вести за допомогою стандартного підходу, заснованого на кореляційному аналізі (із застосуванням коефі-
цієнту кореляції Пірсона). Ефективність методу показана на прикладі перевірки первісних раціональної
функції з квадратним тричленом, який піднесено до квадрату, в знаменнику. Такий підхід дасть змогу
перевірити адекватність знаходження i-го варіанту первісної функції множині наявних первісних цієї
функції та адаптувати задачу до стандартного вигляду.

Ключові слова: первісна, метод верифікації, кореляційний аналіз, аналітична модель, механіка, ін-
тегрування.

An analytical search for antiderivative functions (indefinite integrals) is widely used in the mathematical
simulation of various engineering, economic, ecological, biological, social, and other processes. In their turn,
mechanical problems have many subproblems whose solution involves analytical integration methods. Among
these problems is the problem of development of analytical models for navigation and ballistics support and con-
trol theory models in space rocket engineering. The advantage of this approach to mathematical simulation is a
fast analysis of the state of dynamic systems on different time intervals without calculating all previous states.

In their turn, for some classes of functions, antiderivatives may be found in several different ways, as a re-
sult of which there exist several different forms of antiderivatives that are hard to verify by the classical method in
standard form. This is mainly due to the choice of various combinations of integration methods used in the devel-
opment of analytical models, in particular in problems of applied mechanics.

Taking into consideration these difficulties in the verification of the set of antiderivative functions, this pa-
per proposes a method to check their analytical forms for correspondence with the use of correlation analysis. In
doing so, the arrays of the values of each antiderivative form at certain nodal points are represented as a set of
random variables. With this in mind, it is suggested that the verification process be conducted with the use of the
standard approach based on correlation analysis (using Pearson’s correlation coefficient). The efficiency of the
method is shown by the example of verifying the antiderivatives of the reciprocal of a squared quadratic trinomial.
This approach will make it possible to check the adequacy of the i-th candidate antiderivative and to adapt the
problem to the standard form.

Keywords: antiderivative, verification method, correlation analysis, analytical model, mechanics, integra-
tion.

Introduction. Mathematical modeling of dynamic systems and processes is a
key stage in the study of various phenomena and laws of nature, technical objects,
biological, economic, social systems, etc. Usually, such systems and processes are
modeled using the theory of ordinary differential equations (ODEs) [1 – 3] (me-
chanical systems, economic systems, physical processes, biological systems, etc.),
difference equations (an alternative to modeling systems using ODEs in case of
determined dynamics of changes in system parameters with time) [4, 5], Fourier
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series (time-periodic systems) [6, 7], the theory of infinitesimal calculus (piece-
wise continuous functions in moving control systems) [8, 9] and the theory of
functions of a complex variable (AC circuits) [10]. In turn, when using the above
mathematical apparatus, the theory of integral and differential calculus is used to
find the solution (finding the coefficients of Fourier series, analytical solution of
ODEs, etc.) [11, 12].

In turn, in the tasks of the field of rocket and space technology, the study of
dynamic systems is one of the key issues [13 – 16]. Thus, modeling of spacecraft
orbital and angular motion is often modeled using the ODE theory. So, using com-
puter modeling in dynamic's and ballistic's problems, numerical methods are often
used: for ODEs (ODE systems) (Euler, Runge-Kutta, Adams-Bashfort, Adams-
Multon, Everhart, etc. methods), for numerical integration (formulas of rectangles,
trapezoids, Simpson, etc.) [14]. However, with large limits and a small integration
step, numerical methods require a significant number of integration steps in a cy-
cle, which can significantly overload computing systems. Taking this into account,
it is most expedient to search for analytical or numeric-analytical solutions if this
possible. The use analytical or numeric-analytical can reduce the load on compu-
ting systems, which in turn will increase their performance. In this case, the devel-
opment of mathematical models is carried out taking into account the use of tradi-
tional analytical methods of integration and differentiation [11, 12].

Problem statement and algorithm description Analytical integration is real-
ized by finding the antiderivatives of functions. In turn, antiderivative of the func-
tion ( )f x on a certain interval is called a function ( )F x if it is continuous, dif-
ferentiable and satisfies the condition [17] on this interval:

( ) ( ),  or to the equation
( ) ( ) .

F x f x

dF x f x dx

 


(1)

Given this, the indefinite integral is a family of antiderivatives of a function
that differs by a parameter: the constant C . This is written as follows [11, 12, 17]:

( ) ( )f x dx F x C  . (2)

In turn, there are a number of functions that have different forms of antideriva-
tives depending on the chosen integration method. The correctness of finding such
antiderivatives is rather difficult to identify in the standard form (2).

So, if the values of each function will be presented as arrays of data the statis-
tical methods of verification can be used. The technique of absolute and relative
errors usage for data validation is presented in the papers [18, 19]. Using this
methodology for verification of antiderivatives forms should be based on the con-
stant values of relative error in determined nodal points. In turn, this methodology
is most suitable for verifying two analytical solutions. However, the usage this
methodology requires significant number of nodal points which complicates the
verification procedure. This is especially necessary for the verification of the ana-
lytical forms of antiderivatives with the results obtained by numerical integration
(where the integration error depends on the features of the numerical method it-
self). Also, according [18], the use of the technique of data verification by calcu-
lating the relative error has limits in estimation of functions with near-zero values.
In turn, the use of correlation analysis allows to consider the behavior of a function
on a certain interval, taking into account estimates of the relationship with the var-
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iables of the compared function. This greatly simplifies the verification process
and avoids the difficulties that arise when using methods [18, 19].

Proceeding from this, the paper proposes a method for verifying the forms of
antiderivatives of a function using correlation analysis. In this case, the values of
each of the antiderivative functions at certain nodal points are represented by sets
of random variables. Further, for the i -th antiderivative ( )iF x , which needs to be
verified, the mathematical expectation  M ( )iF x and standard deviation

 ( )iF x are calculated. After that, it is calculated the value of the mathematical

expectation M ( )jF x   and the standard deviation ( )jF x   of the antideriva-
tive function ( )jF x (obtained numerically, analytically, or numerical-
analytically), with which ( )iF x is compared. Then, the mathematical expectation
of a two-dimensional random variable M ( ), ( )i jF x F x   created by the values at
the nodal points of the functions ( )iF x and ( )jF x is calculated. In turn, the
number of nodal points of ( )iF x and ( )jF x must be strictly the same and for the
same values of the input arguments x of these functions. After that, the correla-
tion coefficient (Pearson's correlation coefficient) is calculated as follows [20, 21]:
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(3)

where N is the number of nodal points; ax , bx are the borders of the antideriva-
tives verification interval.

In turn, the accuracy of the method depends on the number of selected nodal
points N in a given interval, as well as the length of the verification interval it-
self. Also, in the case of comparing two antiderivative functions that have an ana-
lytical form, the calculation of mathematical expectations and variances can be
carried out as for continuous random variables in the following form [21]:
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where ( ), ( )i jK F x F x   is covariance; , ( , )i j i jF x x is distribution function of a
two-dimensional random variable.

Lema 1. Thus, taking into account (3) and (4), the necessary and sufficient
condition for the antiderivatives full correspondence to each other is the equality
of the correlation coefficient  ( ), ( )i jr F x F x 1 . In this case, if the function
values ( )iF x will increase or decrease by a certain amount, then the function
values ( )jF x will increase or decrease by the same amount, which correspond to

the definition (2). In turn, if the  ( ), ( )i jr F x F x 1 it can be concluded that
obtained form of antiderivative corresponds to other forms of the function’s anti-
derivatives with a certain degree of confidence.

Estimation of algorithm implementation. Let's consider a function

( )
( )

y x
x a


2 2 2

1 . So ( )y x is a rational function whose denominator is a square

trinomial (for , ,A B C a   21 0 ) raised to the second power. Functions of this
type are often encountered in the description of automatic control systems for spe-
cial ODE's right-hand sides whose inverse Laplace transform has the form

 ( ) sin cosf t t t t   
3
1

2
,  0 . Also, ( )y x can be included in the ODEs

right-hand sides, whose inverse Laplace transform has the form ( ) cosf t t t  ,
 0 . In turn, in some cases, it is necessary to directly integrate the Laplace s-
domains (by applying the Laplace s-domains integration theorem). Such cases can

be finding Laplace s-domains from functions of type ( )( ) f t
g t

t
 , when searching

for an analytical solution for more convenient adaptation of mathematical expres-
sions to machine language. This is often necessary when developing software
without using application packages with built-in operational calculus libraries
(such as Matlab, Scilab, MathCad and their analogues).
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Thus, the first variant of the analytical finding of the antiderivative for

( )
( )

y x
x a


2 2 2

1 is the use of the well-known recursive formula [12] of the

type:

,
( )

.

k kk

x k
I I

ka x a ka

k
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In this case k 1 . Then, using formula (5), the expression for the function

( )
( )

y x
x a


2 2 2

1 first form antiderivative ( )F x1 can be written as follows:
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The second variant for finding the antiderivative for the function

( )
( )

y x
x a


2 2 2

1 is to use a trigonometric substitution of the form:

tan( )x a z  , arctan xz
a
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. Using this substitution, the in-

definite integral of the function ( )y x takes the following form:
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Based on the obtained values of the variants of the antiderivatives ( )F x1 and
( )F x2 for the function ( )y x , it can be seen that the values of the second terms

have different representations. In turn, according to the properties of the universal

trigonometric substitution [12], the expression
sin arctan x

a

a

  
    

3

2

4
can be reduced



31

to
( )
x

a x a


2 2 2

1

2
. In this case, it can be seen that the values of the antiderivatives

( )F x1 and ( )F x2 are interconnected by the relations of the universal trigonomet-
ric substitution when using the integration methods (6), (7) and the use of correla-
tion analysis for verification is optional.

In turn, if apply the method of two substitutions, it can be obtained another
form of the antiderivative for functions of the type ( )y x . So, when use the substi-

tution 1 for the function ( )y x : x a t 2 2 , x t a   2 , dt
dx

t a




 22
,

finding of the antiderivative is reduced to the form:

( ) ,dt
F x t x a

t t a
   


 2 2

3 2 2

1

2
. (8)

Further, use the substitution 2: t
m

1 , m

t

1 , dm
dt

m
 

2
expression (8) is

reduced to the form:

( ) ,mdm
F x m

x ama
 


3 2 22

1 1

2 1
 . (9)

Multiplying the numerator and denominator by m , expression (9) can be
written as follows:

( ) ,mdm
F x m

x am m a
 


3 2 22 2

1 1

2
 .

The antiderivative of this expression has the following form:
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, (10)

where C1 and C2 are the constants of integration on first and second intervals
depend of sign.

It can be seen from the obtained result that the form of the antiderivative func-
tion ( )F x3 has significant differences in the second term, both in form and in
sign, from the second ( )F x1 and ( )F x2 terms. In turn, verification by analytical
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methods can be quite cumbersome and lead to additional errors. Thus, in this case,
it is advisable to apply a verification method based on correlation analysis.

Based on the Lema 1, let's determine the verification conditions for the anti-
derivatives ( )F x1 , ( )F x2 and ( )F x3 of the considered function ( )y x on a cer-
tain interval  ,x x1 2 in the following form:
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For a numerical experiment, let's take for example the a value of function

( )
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2 2 2

1 equal to 10. Then, the values of antiderivatives ( )F x1 ,

( )F x2 and ( )F x3 will be have the next form:
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Let's set the constants C  0 for ( )F x1 , ( )F x2 and
. ;C C 1 20 0007854 0 for ( )F x3 . Then using the open-source package of

mathematical applications SciLab carry out the verification of these antideriva-
tives. To do this, let's take a breakdown interval  ,x x1 2 from -50 to 50 with a
step of .0 001 and build graphs of all three antiderivatives (Fig. 1) at a 10 .

Fi
(x

)

x

F3(x)

F1,2(x)

Fig. 1 – The graphs of antiderivatives ( )F x1 , ( )F x2 and ( )F x3 of the function ( )y x

on the interval  ,x  50 50 at a 10
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It has been determined that if C1 and C2 of the antiderivative function
( )F x3 have wrong values, ( )F x3 suffers a discontinuity of the first kind (jumps)

at the point x  0 , which does not satisfy condition (1). In this case, the function
( )F x3 cannot be fully called the antiderivative of ( )y x . In turn, if

.C 1 0 0007854 and C 2 0 , the correlation coefficients are equal
   ( ), ( ) ( ), ( ) .r F x F x r F x F x 1 3 2 3 1 0 , which satisfies condition (11) (fig.1).

Thus, the proposed verification method made it possible to fully assess the
correspondence of the forms of the antiderivatives of the function ( )y x to their
direct definition (1). Also, if function has any different constants depending on the
interval as ( )F x3 , the correlation methodology helps to determine these constants
correctly. It is also established that when applying various integration methods, the
properties of the antiderivative may change.

Discussion. The use of the modern computer technology power in the applica-
tion of the proposed method makes it possible to quickly verify the analytically
found form of the antiderivative function to its other forms. In turn, if there are less
than two such forms, then it is advisable to carry out verification with the expan-
sion of the function in a Maclaurin (Taylor) series on a given interval and with
integration values using numerical methods. The approach of representing func-
tions describing perturbative influences by the series is especially often used in the
analysis of spacecraft dynamics [15, 16, 20]. In this case, taking into account the
calculation error when using one or another numerical method, as well as the de-
gree of expansion of the original function in the Maclaurin series, the application
of the proposed verification method may not give an absolute correlation even in
the absence of calculation errors. So, for example, let's expand the function

( )
( )

y x
x


2 2

1

100
in a Maclaurin series up to the 8th degree and integrate. The

expansion has the following form:
( ) ( )( ) ( ) ( ) ( )( ) ( ) ...

! ! ! !
y y y y

y x y x x x x

x x x x
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.

By directly integrating, it will be got:

( )Y x x x x x x    
    

3 5 7 9
2 3 4 5 6

1 2 72 2880 201600

100 3 100 120 100 5040 100 9 40320 100
.

Let's plot graphs (Fig. 2) and carry out a correlation analysis of the antideriva-
tives ( )F x1 , ( )F x2 , and the integral of the Maclaurin expansion ( )Y x of the

function ( )
( )

y x
x


2 2

1

100
on the interval  ,x  10 10 .
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Fi
(x

)
x

F1,2(x)

Y(x)

Fig. 2 – The graphs of antiderivatives ( )F x1 , ( )F x2 and the integral of the Maclaurin

expansion ( )Y x of the function ( )y x on the interval  ,x  10 10 at a 10

Thus, when using correlation analysis, it has been obtained
   ( ), ( ) ( ), ( ) .r F x Y x r F x Y x 1 2 0 9947596 . In turn, if the degree of expan-

sion in the Maclaurin series is increased to 14, the correlation will be 0.9951848.
In such cases, when using the proposed verification method, it is necessary to set
the confidence value of the correlation coefficient (according to Lemma 1), de-
pending on the required calculation accuracy, in which the found analytical value
of the antiderivative can be considered correct. This approach can be used to
search for analytical solutions to differential equations and their systems, the right-
hand sides of which are difficult functions. In turn, the chosen confidence value of
the correlation coefficient will affect the accuracy of calculations when using the
found analytical solution.

Conclusions. A method for verifying the analytical search for antiderivatives
using correlation analysis is proposed. On the example of finding antiderivatives

of a function ( )
( )

y x
x a


2 2 2

1 and their further verification it has been shown

the example of proposed method implementation. A numerical experiment using
the proposed verification method showed different properties of antiderivatives

depending on the chosen integration method for the function ( )
( )

y x
x a


2 2 2

1 .

Taking this into account, it is expedient to apply the proposed method of verifica-
tion of the analytical search for antiderivatives to difficult functions that have dif-
ferent forms of antiderivatives. Also, this method can be used to analyze the confi-
dence values of the accuracy of the found numerical, numeric-analytical and ana-
lytical solutions for integrating various difficult functions, ODEs which are often
uses in different areas in mechanics.
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