),

(

(

),

(

),

(

),

© . . ,2014

. - 2014. - 2.

--,

.

9].

[4]. [5, 6] , . . . [7] -

, – , , – , , , –

J₁. [8,

J φ, -, -.

[10].

(- - -)	D_H ,	\overline{d}	eta_1 ,	Δφ	$\left(\frac{J_{OT}}{J_1}\right)_{\rm max}$		
1.1	12	0,525	8°9′	0,17–1,01	0,41	[7, 9]	-863
2.1	5,6	0,464	8°9′	0,10–0,93	0,23	[7, 9]	-862
2.5	5,6	0,464	18°8′	0,30–0,70	0,04	[7, 9]	—
3	14,11	0,496	11°21′	0,44–1,13	0,08	[11]	-218
4.1	15,62	0,487	11Ê	0,36–0,98	0,79	[12]	-273
4.2	15,62	0,487	13 Ê 40 ¼	0,31–0,68	0,63	[12]	-263
6	5,04	0,383	8Ê26 ¼	_	—	[10]	_
7	15,62	0,487	10°	0,35–0,92	0,73	[13]	-120

2.

 \overline{p} –

[7]

$$\frac{dG_1}{dt} = \left(\overline{p} - p_1 - a_1 G_1^2\right) \frac{1}{J_1 + J_{OT}},$$
(1)
; $t -$; $a_1 -$.

•

$$p_1 = p'_1 - {}_1 \cdot G_1^2 - J_1 \cdot \frac{dG_1}{dt}, \qquad (2)$$

.

);
$$a_1$$
 , J_1 –

,

p'_1 -(

,

 G_1

-

_

_

_

,

$$\frac{dG_1}{dt} = \left(\overline{p} - p_1'(t) - \begin{pmatrix} 1 - 1 \end{pmatrix} \cdot G_1^2 \right) \cdot \frac{1}{J_1 + J_{OT} - J_1},$$
(3)

 $p_1'(t)$ – . [10] J_{OT}

$$J = \frac{\tilde{J}_{OT}^{*}}{Y}, \quad \tilde{J}^{*} = a_{OT} \left(1 - \varphi\right)^{2}, \quad a_{OT} = 134,$$
(4)

$$Y - Y = \frac{1}{2} \left(\frac{D_{H}^{2} - d_{BT}^{2}}{D_{TP}^{2}} n \ s \ q_{OT} \right)^{2}; \quad D_{TP} - \qquad ;$$

$$d_{BT} - \qquad ; \ n - \qquad ; \ s - \qquad ; \ s - \qquad ; \ q_{OT} - \qquad , \qquad -$$

J_{OT} (4),

,

 a_{OT} ,

 a_{OT}

φ

 $p_1'(t)$ $G_{1i}^p(t, a_{OT}).$

(3)

 a_{OT} .

$$\sum_{i=1}^{N} \left(G_{1i}(t) - G_{1i}^{p}(t, a_{OT}) \right)^{2} \to \min,$$

 $G_{1i}(t)$ – 3.

2.5 3
$$(J_{OT}/J_1)_{max}$$

39

•

 G_1 (

1.1,

4).

,

 J_{OT} (.1 ,

 J_{OT}

 G_1 .

.

 $G_{1\,i}^{\,p}\bigl(t\bigr)$

_

-

,,

 p_1 ,

1;

. 1

 J_{OT}

 p_1

2)

3)

,

 a_1

-[12, 13].

 $G_{1i}(t),$ J_1 "

. 1

 J_{OT}

 $p_1'(t),$

 Tilner W. Anfluss des Ansaugdruckes Auf die Kavitation Einer Zweistufigen Pumpe / W. Tilner, W. Lehman // Maschinenmarkt. – 1985. – Vol. 91, 97. – P. 2021 – 2024.

4. . . / . . , . . // .- .: . ,1991.- .97-104. . . / . . 5. // . – . : . , 1980. – . 47 – 60. · · // 6. , . – . : . . – 1977. – . 16 – 25. _____ . . . ____.: 7. / . . • • , . . -, 1977. – 352 . 8. _ / . . , . . // -. – . : . , 1980. – . 37 – 46. .-.: . ,1989.-316 . / . . 9. · · · · 10. --, // / . – 1995. – . 4. – . 99 – 103.

 Zadontsev V. A. Experimental Study of LR Pump at Cavitation Autooscillations Regimes / V. A. Zadontsev // Proceedings of Third China-Russia-Ukraine Symposium on Astronautical Science and Technology, XI' AN China, September 16-20. – 1994. – P. 285 – 287.
 . . .

//	-	/	, , , , , , , ,
13	" . //	-	/ , , 2010. – 10
(77). – . 89 – 93. 14 464 .		/ .	, , 1974. –

,

13.05.14 23.06.14