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Cavitation phenomena in liquid-propellant rocket engine (LPRE) pumps not only affect the power
performance characteristics of the pumps, but they also affect the pump dynamics and pogo vibrations. The
theoretical characterization of cavitation phenomena in LPRE pumps is not a widely used practice because
theoretical and experimental data are in unsatisfactory agreement. Because of this, use is made of approaches that
employ experimental data. The goal of this work is to determine the coefficients of a hydrodynamic model of
cavitating LPRE pumps throughout the cavity existence region based on the experimental frequencies of
cavitation oscillations and cavitation self-oscillation boundaries. In determining the cavity elasticity and negative
resistance, use was made of the experimental cavitation oscillation frequencies of 26 LPRE pumps differing in
dimensions and capacity. In determining the cavitation resistance distribution coefficient and the cavity-due
disturbance transfer time, the experimental cavitation self-oscillation boundaries of 14 more pumps were used. To
extend the cavity elasticity determination region, the extrapolation dependence of the cavity elasticity in
cavitation stall regimes was updated. To make the stratification of the cavity resistance dependence more uniform
in the range of large discharge coefficients, incipient cavitation numbers were refined. Using he qualitative
dependence of the cavitation resistance distribution coefficient obtained from theoretical transfer matrices of
cavitating pumps and its lower estimate (at zero disturbance transfer time) and upper estimate (for a uniform
stratification of pump transfer matrix determinants), its analytical dependence was found. Using it and the
coefficients of a mathematical model of cavitation oscillations on the cavitation-self oscillation boundary,
disturbance transfer times were found and approximated.
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