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The dynamic instability of a composite cylindrical-conical thin-walled structure interacting with a supersonic gas
flow is analyzed. This structure consists of three layers. The middle layer is manufactured by FDM additive technologies
from ULTEM material. The top and bottom layers are manufactured from carbon-filled plastic. Free linear vibrations of
the thin-walled structure are studied by RayleighRitz semi-analytical method to obtain a model of dynamic instability.
The free linear vibrations are analyzed numerically. The obtained eigenfrequencies and eigenmodes are in close
agreement with the data obtained by the ANSYS commercial software. The calculated eigenmodes were used to construct
a model of composite cylindrical-conical shell instability. This model of instability is a system of ordinary linear
differential equations in the generalized coordinates of the thin-walled structure. The supersonic gas flow is described by
a piston theory, which accounts for the angle of attack. The study of the dynamic instability of the composite cylindrical-
conical shell reduces to analyzing the trivial equilibrium instability of the system of ordinary differential equations.
Characteristic exponents are calculated to analyze the stability of the trivial solution. These characteristic exponents are
calculated from an eigenvalue problem. If the angle of attack is 12° and the Mach number is small, the minimal value of
the critical pressure is observed for three circular waves. If the Mach number is increased, the minimal critical pressure
is observed for four and five circular waves. If the angle of attack is 6° and the Mach number is small, the minimal critical
pressure is observed for two circular waves. If the Mach number is increased, the minimal critical pressure is observed
for three and four circular waves. The dynamic stability is lost for eigenmodes with a small number of circular waves
(2÷5).
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