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The problem of high-speed railway transport development is important for Ukraine. In many countries ar-
ticulated trains are used for this purpose. As the connections between cars in such a train differ from each other,
to investigate its dynamic characteristics not a separate car, but a fulltrain vibrations model is necessary. The
article is devoted to the development of the mathematical model for articulated passenger train spatial vibrations.
The considered train consists of 7 cars: one motor-car, one transitional car, three articulated cars, one more transi-
tional car and again one motor-car.Differential equations of the train motion along the track of arbitrary shape are set
in the form of Lagrange�s equations of the second kind. All the necessary design features of the vehicles are takeninto
account.Articulated cars have common bogies with adjoining cars and a transfer car and the cars are united by the
hinge. The operation of the central hinge between two cars is modeled using springs and dampers acting in the
horizontal and vertical directions. Four dampers between two adjacent car-bodies act as dampers for pitching and
hunting and are represented in the model by viscous damping.The system of 257 differential equations of the
second order is set, which describes the articulated trainmotion along straight, curved, and transitional track
segments with taking into account random track irregularities. On the basis of the obtained mathematical model
the algorithm and computational software has been developed to simulate a wide range of cases including all
possible combinations of parameters for the train elements and track technical state. The study of the train self-
exited vibrations has shown the stable motion in all the range of the considered speeds (40km/h “ 180km/h). The
results obtained at the train motion along the track maintained for the speedy motion have shown that all the dy-
namic characteristics and ride quality index insure train safe motion and comfortable conditions for the travelling
passengers.

Keywords:mathematical model, articulated train, spatial vibrations, dynamic characteristics.

Introduction. The successfuloperation of high-speed passenger railway
transport in Europe shows the need to develop a similar railway network in
Ukraine.In different countries issues related to the creation of high-speed rolling
stock are resolved in different ways. One of the principles of high-speed trains cre-
ating is the principle of articulation, which involves the support of adjacent cars on
common bogies located between them[1 “ 3]. For an articulated train the key ele-
ment is the coupling design, which ensures the stability of two series cars.

A typical articulated train consists of a locomotive followed by one transfer
car, several articulated cars, one more transfer car, and another locomotive. The

O. Markova, H.Kovtun, V.Maliy, 2021
«���. ��������.“ 2021. “ ‹ 2.



92

transfer car has an independent bogie on the locomotive side and a common articu-
lated bogie with an adjacent passenger car. The dynamic interaction between cars
in such a train cannot be estimated considering a separate car. Therefore, to model
the vibrations of articulated trains and assess their dynamic qualities, it is neces-
sary to consider a model consisting of several vehicles[4].

Mathematical model.The study of railway vehicles dynamic characteristics is
associated with the consideration of mechanical systems with many degrees of
freedom [5]. The reliability of the results obtained is determined, first of all, by the
correct choice of the calculation scheme of the train under consideration. There-
fore, the developed design scheme of an articulated passenger train should take
into account the design features and characteristics of the cars load-bearing ele-
ments jointsas fully as possible. The high-speed train under considerationis
shown onFig. 1. The transfer car has an independent bogie on the locomotive side
and a common articulated bogie with an adjacent car. The independent bogies of
the transfer cars are connected to the body in the usual way. Articulated cars share
bogies with adjoining cars and a transfer car. The bogies ofthe articulated cars
have two-stage suspension. The first stage has an elastic element working in longi-
tudinal, horizontal lateral and vertical directions and damping elements. The sec-
ond stage of suspension includes the connections between the bogie frameand the
car-body and the connections between the frame and the articulation pivot. The
operation of the central hinge between two cars is modeled using springs and
dampers acting in the horizontal and vertical directions. Four dampers between
two adjacentcar-bodies act as dampers for pitching and hunting and are represent-
ed in the model by viscous damping.

Fig. 1

A standard motor car of an electric train is considered as a locomotive. Thus,
the train under consideration consists of 7 car-bodies, 4 bolsters, 10 bogies and 20
wheelsets. The entire composition of such a train can be modeled as a system of 41
rigid bodies with 246 degrees of freedom as a whole.

We consider the motion of an articulated passenger train along an elastic-
viscous-inertial track,which is modeled by a mass reduced to each wheel (forty
reduced masses), which has only vertical and horizontal lateral displacements and
rests in these directions on springs and viscous dampers that simulate elastic-
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dissipative properties of rails and subrail base. Thus, in the general case, the sys-
tem has 41› 6 + 40 › 2 = 326 degrees of freedom.

A fixed coordinate systeml
~

with its origin at the track centre line on a
rail top level is chosen for describing the motion of the train along track sections
of arbitrary shape, and for each rigid body two moving coordinate systems are
chosen: a natural onel¶·a̧nd associated with rigid body ·̧¶̀ ( ¶̀, ·̀,
¸̀ are the principal central axes of inertia). All of the coordinate systems are

right, and the axesl
~ , l¶, ¶̀ are directed from left to right, and the axes

l
~ , l ,̧ ¸̀ are directed down (Fig. 1) [6].

The axes of the natural coordinate system are directed along the tangent, nor-
mal and binormal to the track axis, respectively. The origin of coordinatesl for
each rigid body is at a distance±from its position at the initial time (here±is the
distance travelled). The position of the natural system of coordinates relative to the
stationary one is characterized by the arc coordinate±along the track, by the an-
gle between the axesl¶andl

~
in the plane, and the angles¦and ¦be-

tween these axes invertical planes, which were determined by the elevation of the
outer rail °¦ in curve. Parameters of the rail °¦, are the given functions of coor-
dinate±.

When referring to the coordinate systemof bodies the following subscripts are
used: the car-body“ )7,1(§¤§ , the bolster“ )4,1(§ § , the frame“ ±ª( )10,1ª ,
the wheelset“ )20,1(§§ is the number of a wheelset in thedirection of motion),
the wheel“ § (̈ =̈ 1 for the car right side,̈ = 2 for the car left side), rails at the
points ofcontact“ °§¨.

Displacements ¸·¶ ,, and rotation angles ,, of separate bodies describe
longitudinal, horizontal lateral, vertical displacements, hunting, pitching, rolling of
a rigid body respectively.Positive directions of displacements are shown in Fig. 1
by arrows.

To determine the number of degrees of freedom for the mechanical system
considered, the constraints imposed on the bodies� displacements as the generally
accepted assumptions and design features of the train cars are taken into account.

Wheelsets� vertical displacements and rolling are expressed in terms of the
vertical rail track irregularities:

),20,1(;
2

;
2 1

1221 §
¢
¸¸¸¸¸ §§

§
§§

§ (1)

where §¨¸ is thevertical displacementof the§-th wheelset -̈th wheel, which de-
pendson the rail irregularitiesandrail vertical displacement; 12¢ is the distance
between the wheelset wheels� mean rollingradii.

It is assumed that the radii°of the wheels� mean rolling circles are equal.
Then at the coincidence of the track and bogie longitudinal planes of symmetry all
the wheels turn through the same angle:

)20,1(, §
°
±¶§

§ . (2)
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Bolsters of the motor cars are moving together with the car-bodies in the follow-
ing directions:

),4,1(
;

;)1(

©

ª¸¸

¤ ©

¤ ©

¤
©

¤ ©

(3)

where ª2 is the motor car base.
Because of the rigidity of the longitudinal rods bolsters angular displacements

in the horizontal plane are equal to the corresponding displacements of the bogies�
frames:

).2,1;4,1(; ª©±ª © (4)

With constrains (1)“ (4) the fiarticulated train-trackfl system has 326-76=250
degrees of freedom.

To investigate train motion at the transitional modes it is necessary to add one
more coordinate for each car. It corresponds to the change of the car absolute dis-
placement in the longitudinal direction“ )7,1(§±§ . So the number of degrees of
freedom for the train will be equal to 257.

Differential equations of the train motion along the track of arbitrary shape are
set in the form of Lagrange�s equations of the second kind [7]:
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(5)

where §§¯,̄ are the generalized coordinates and their velocities;q is the kinetic
energy;Ѯ is the potential energy;ѳ is the dissipative function; §n are the gen-
eralized non-potential forces; §p are the applied external forces.

For each rigid body the kinetic energy is determined by the Koenig theorem.
In general,the expression for the kinetic energy of the§-th rigid body can be writ-
ten as follows:
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where §« is the mass of the§-th rigid body; §f with appropriate subscripts de-
note the principal central moments of inertia of the§-th body; §§ ´h, §h is
the track curvature under the§-th body;´is the speed of motion; °§¦ is the track
elevation under the§-th body mass centre caused by the outer rail elevation in the
curve 12¢¦ ¦° .

In accordance with the accepted assumptions the kinetic energy of the system
modeling the track can be written as follows:
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where °´°¦«« , are the track masses reduced to one wheel in the horizontal lat-
eral and vertical directions, respectively.

The potential energy of the considered system (Ѯ ) is defined as the sum of
elastic deformations energy (1Ѯ ) and the energy changes as a result ofrising or
lowering the system bodies� mass centres (2Ѯ ).

The potential energy of the system1Ѯ is defined by the Clapeyron theorem as
the sum of energies accumulated in the elastic elements of the system during their
deformation and has the form:
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where ¡¶§¡·§¡¸§ ©©© ,, are the stiffnesses of the§-th elastic element of the bogie
central suspension in the vertical, horizontal lateral and longitudinal directions;

¡¶§¡·§¡¸§ ,, are the deflections of the§-th elastic element of the central sus-
pension in the vertical, horizontal lateral and longitudinal directions;

~¶§~·§~¸§ ©©© ,, are the stiffnesses of the elastic elements installed in the axle box
above the§-th wheelset in the vertical, horizontal lateral and longitudinal direc-
tions; ~¶§~·§~¸§ ,, are the deflections of theelastic elements installed in the
axle box above the§-th wheelset in the vertical, horizontal lateral and longitudinal
directions; ±¶§±·§©© , are the stiffnesses of the bogie axle box/frame additional
connections in the horizontal lateral and longitudinal directions; ±¶§±·§, are the
deflections of the§-th axle box rod inhorizontal lateral and longitudinal direc-
tions; ±¦¶±¦·±¦¸ ©©© ,, are the hinge stiffnesses in the vertical, horizontal lateral
and longitudinal directions; ±¦¶§±¦·§±¦¸§ ,, are the hinge deflections in the ver-
tical, horizontal lateral and longitudinal directions;© is the torsion bar twist stiff-
ness; § is the angle deflection at the car-body and the§-th bogie rolling;

±©¶§±©·§©© , are the stiffnesses of the rubber dampers in connection of car-body and
bogie bolster inhorizontal lateraland longitudinal directions; ±©¶§±©·§, are the
corresponding deflections; °·° ©̧© , are thevertical and horizontal lateral stiff-
nesses of the track; °·§¨°¸§¨, are the vertical and horizontal lateral deflections
of the track under the -̈th wheel of the§-th wheelset.

Mutual bodies� displacements leading to elastic element deformations for the
central and axle box suspensions are determined in usual way [5]. The displacements
of the bogie with central suspension at one side and the hinge at the other side (artic-
ulated bogie) can be written in follows:

“ vertical displacements ofsprings and hingeelastic elements:
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“ horizontal lateral displacements ofsprings and hingeelastic elements:
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“ longitudinaldisplacements ofsprings and hingeelastic elements:

;11 °©¶ ¶¶
);( 2222 °°©©°©¶  ¶¶
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where 1ª is the distance from the transitional car mass centre to the hinge in longi-
tudinal direction;~ is the distance from the frame mass centre to the hinge;2ª is
the distance from the articulated car mass centre to the central suspension element;

*~ is the distance from the frame mass centre to the central suspension element; 
is the distance between central suspension elements in lateral direction;

hª³ §§
2

2
1 is the arch rise of the curvilinear track (in horizontal plane) under the

car-body mass centre in the limit of car base (¤h is the track curvature under the
car mass centre);

The potential energy caused by rising or lowering the§-th body centre of gravi-
ty with taking into account the curvilinear motion is defined as follows:

,)(
41

1
2

§
§§§¦§ ¸·¥«Ѯ

where¥ is the acceleration due to gravity; ¦§is an anglebetweenthe horizontal
plain under the§-th body mass center and the track plate because of the outer rail
elevation on the inner one.

The constructed calculation model takes into account the effect of viscous forces
in the vertical and horizontal deflections of the suspension.

Dissipation function for the considered system has the form:
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where ¡¸§is the coefficient of energy dissipation for the§-th damper of the
central suspension in the vertical direction;~¸§is the coefficient of energy
dissipation in the elastic elements installed in the axlebox in the vertical direction;
¡§is thecoefficient of energy dissipationof thedeviating hydrodamper between
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§-th bogie bolster and frame; ¶§is thecoefficient of energy dissipationfor the§-
th damper installed between the car-bodies; °·° ,̧ are the coefficients of the

energy dissipation in the track in the vertical and horizontal lateral directions;
are the relative velocities of bodies connected by viscous dissipative elements.

Generalized forces §n are definedas coefficients of variations of generalized
coordinates in expressions of creep forces¶§¨q , §¨q possible work[8]. In
determining the forces acting on the wheel in the horizontal lateral direction,
components of the force of gravity are taken into account (in addition to the creep
forces). Contact point coordinates on the surfaces of the wheel and the
corresponding rail are determinedin accordance with the theory described in the
article[9].

After the expressions ofkinetic and potential energy, dissipation function, gen-
eralized and external forces are put in (5), a system of nonlinear differential equa-
tions of the 514-th order is obtained, which describe the articulated train motion
along straight, curved, and transitional track segments with taking into account ran-
dom track irregularities.

On the basis of the obtained mathematical model the algorithm and computa-
tional software has been developed to simulate a wide range of cases including all
possible combinations ofparameters for the train elements and track technical state.
Calculated estimation oftrain dynamic indices has been done by the solution of non-
linear differential equations described above. Non-linear differential equations have
been solved by the Adams-Bashfort method.

Results of calculations. The study of the train self-exited vibrations has
shown the stable motion in all the range of the considered speeds (40km/h “
180km/h). Time histories of the wheels hunting at the train motion along the
straight track without irregularities for the speeds of 40km/h, 100km/h and
180km/h are given on Fig.2.

Fig. 2


