

This paper presents the results of testing of mathematical models that analyze the mass-center and aboutmass-center cooperative motion parameters of a guided rocket object in different trajectory portions and determine the time evolution of its mass-centering and aerodynamic characteristics. The paper presents a mathematical model that allows one to form a yaw angle variation program in any aeroballistic trajectory portion and study the motion parameters in lateral yaw angle maneuvers. Use is made of mathematical and numerical simulation, which allows one to assess, at the initial design stage and based on the key design parameters, trajectory parameters, and flight control programs, the controllability of a rocket object and its flight range and basic characteristics and study the motion of its mass center and its motion about the mass center in horizontal and vertical maneuvers. The guided rocket object under consideration is a single-stage solid-propellant rocket that is to deliver a payload of desired mass to a given point at given values of kinematic trajectory parameters. The aerodynamic and aeroballistic characteristics are determined for a "normal" layout scheme with aerodynamic rudders to stabilize and control the rocket in flight. A verification is made of the author's methodology for studying and characterizing a guided rocket object using a limited amount of available information of its mass and dimensions, the power characteristics of its solid-propellant sustainer engine, and the parameters of its aeroballistic trajectory. A study is conducted on the flight of a guided rocket object in lateral yaw angle maneuvers. The effect of a guided rocket object' lateral maneuver on the flight range is estimated.

Keywords: guided rocket object, design parameters, trajectory parameters, flight control parameters, ballistic and aeroballistic trajectories, lateral maneuver, solid-propellant rocket engine, optimization methodology.

Lockheed Martin.		300 .	:
MGM 140 , MGM 140 ,	MGM 164	, MGM 164 ,	MGM 168 .
ATACMS			
39.		1	ATACMS
	M270 MLRS	- (,)
M142 HIMARS (,) [1] – [5]	
	MGM 140	Block 1	
300			. MGM-140
1320 ,		275	74
160 .			-
_		GPS NAVS	TAR.
			25
			, Block 1
		[1] – [5].	
ATACMS		,	, , -
, , ,		,	[5].

- , - , - , - , , - , , - , , - , , - , , - , , - ,

, () , -, « » -, , , -, , , , -

, , [7] – [12].

, [7] – [12]. , .

,

99

 ϕ_{man}^k ;

 $\phi = \phi_{np}(t) = A_0 + A_1 \cdot t \; .$ (1)

$$A_0 \quad A_1 \tag{1}$$

$$: - t = t_n (t_n - t_{man} - t_{ma$$

$$\phi = \phi_{man}^k \, .$$

$$A_0 = A_1$$

$$A_0 = -\frac{\phi_{man}^k}{t_{man}^v} \cdot t_n, \quad A_1 = \frac{\phi_{man}^k}{t_{man}^v}.$$
 (2)

[6] – [8]:

1

m_0 ,	1320	
m_{GTH} ,	160	
D_{KRO} ,	0,610	
L_{KRO} ,	4,5	
l_{ADR} ,	1,4	()
m_{ADR} ,	40	
$\in p$	0,22	
~ _ k	0,345	
p_k , / ²	50	
D_a ,	0,43	
d_{kr} ,	0,095	
P,	6000	
m_c , /	20,145	
t_{Σ} ,	44,78	
J_{yd} ,	297,844	
m_m^{Σ} ,	864,16	

 $\{_{cm}=60$. ()

$$H_{\text{max}} = 60$$

$$t_{PUT1} = 20$$

$$H_{\text{max}} = 60$$

$$r_{const} = 15$$

$$H_{PUT4} = 15$$

$$\{_{c} = -90$$

$$\{_{c} = -90$$

$$H_{const} = 37,41$$

. 2.

2

-

<i>L</i> ,	382,922	
${}_{cm},$.	60	
$\left\{ {}_{AUT} ight.$.	25,12	
V_{AUT} , /	1833,6	
t _{PUT1} ,	20	- ()
$H_{\rm max}$,	60	
$Q_{H_{ m max}}$, / ²	35,3	H _{max}
r _{const} , .	15,00	3
t _{PUT3} ,	5	
$H_{man}^n = H_{PUT4},$	15	
t _{{c} ,	37,41	{ _c
{ _c , .	-90,0	
V _c , /	306,7	

15

(. 1, . 2) $H^{n}_{man} = 15$ ϕ^{k}_{man}

 $t_{man}^{v}=5$

,

•

Az . 3.

	ϕ_{man}^{κ}				Az				
-	ϕ^k_{man} , .								
	-40	-25	-10	0	10	25	40		
				A	z=20°				
L,	382,063	382,615	382,940	382,992	382,904	382,535	381,957		
Ζ,	7,324	6,470	5,145	4,109	3,060	1,654	0,636		
				Az=40	0				
<i>L</i> ,	383,071	383,630	383,959	384,014	383,928	383,560	382,981		
Ζ,	7,213	6,356	5,033	4,000	2,955	1,554	0,540		
	$\overline{Az}=60^{\circ}$								
L,	383,894	384,460	384,796	384,855	384,773	384,408	383,830		
Ζ,	7,109	6,248	4,925	3,893	2,851	1,456	0,448		

. 1.

L

L

Ζ.

Az

$$t_{man}^{\nu} = 5$$
 ($\phi_{man}^{k} = \pm 40$., -
 $H_{man}^{n} = 15$), -

 $Az = 20^{\circ} 60^{\circ}.$

$$z = 0,448$$

$$\phi_{\text{man}}^{\text{k}} = +40^{\circ} \qquad z = 7,324$$

•

 $\phi_{man}^{k} = -40^{\circ}.$

$$\phi_{\text{man}}^{k} = \pm 40 \qquad \qquad (\phi_{\text{man}}^{k} = 0) \\ Az$$

 t_{nman} 5 35

 $t_{man}^{\nu}=5$.

•

 $t_{n\,man} = 5$

ϕ^k_{man} ,	-40	-25	-10	0	10	25	40
<i>L</i> ,	365,248	378,901	382,908	382,922	381,494	375,331	359,846
Ζ,	237,585	163,642	70,387	3,980	-62,318	-155,042	-228,430
z _{usl} ,	233,605	159,662	66,407	0,0	-66,298	-159,022	-232,41
n_z^{\max}	6,31	4,14	1,71	0,0	-1,71	-4,15	-6,30

 $t_{n\,man} = 35$

ϕ^k_{man} ,	-40	-25	-10	0	10	25	40
<i>L</i> ,	316,406	356,510	379,073	382,922	377,696	353,833	314,387
Ζ,	198,403	148,456	67,299	3,980	-59,324	-140,831	-192,704
z _{usl} ,	194,423	144,476	63,319	0,0	-63,304	-144,811	-196,684
n_z^{\max}	8,76	6,23	2,67	0,0	-2,67	-6,18	-8,66

$$.4, .5$$

$$z_{usl} - z_{usl} \left(\phi_{man}^{k}\right) = z\left(\phi_{man}^{k}\right) - z\left(\phi_{man}^{k} = 0\right);$$

$$n_{z}^{max} - z_{usl} \left(\phi_{man}^{k}\right) - z_{usl} \left(\phi_{man}^{k} = 0\right);$$

: ,

104

,

-

_

-

 $t_{n\,man}$.

 $n_z^{\max} \approx 8,76.$

 ϕ_1

		φ	$_{\rm c} = -90^{\circ}.$			
$\varphi_{cm} = 60$.,			$\phi_{AUT} = 25,17$		
					<i>L</i> ,	
	Ζ,		n_{z1}^{\max}	$n_{z 2}^{\max}$	ϕ_2	
$\phi_1=\pm 40^{o}$. 6,	. 7.			
						6

					<u>ф</u>	ф — 40	0
	I.	I.	I.	I.	Ψ_2	ψ_140	•
φ ₂ ,	-40	-25	-10	0	10	25	40
<i>L</i> ,	366,715	366,666	366,311	365,940	365,494	364,773	364,017
Ζ,	238,547	237,163	235,538	234,470	233,508	232,388	231,713
n_{z1}^{\max}	6,31	6,31	6,31	6,31	6,31	6,31	6,31
$n_{z 2}^{\max}$	0,01	-0,79	-1,78	-2,43	-2,99	-3,52	-3,71

 ϕ_2

$$z, \qquad n_{z1}^{\max} \quad n_{z2}^{\max}$$

$$\phi_1 = 40 \qquad . \qquad .7.$$

7

					ϕ_2	$\phi_1 = 40$	•
φ ₂ ,	-40	-25	-10	0	10	25	40
<i>L</i> ,	358,808	359,560	360,249	360,678	361,028	361,333	361,321
Ζ,	-222,984	-223,443	-224,394	-225,274	-226,299	-227,925	-229,362
n_{z1}^{\max}	-6,30	-6,30	-6,30	-6,30	-6,30	-6,30	-6,30
$n_{z 2}^{\max}$	3,10	2,77	2,62	2,44	1,69	0,79	0,03

L

 $\phi_1 \quad \phi_2$

Ζ.

$$Psil = \phi_1$$

$$\phi_1 \quad \phi_2$$

 5. ATACMS
 Advanced
 Military
 Rocket
 Technology.
 URL:
 https://www.lockheedmartin.com/en-us/products/army-tactical-missile-system.html (

 6.
 .
 .
 .
 .
 .
 .
 .
 .

 6.
 .
 .
 .
 .
 .
 .
 .
 .

. 2020. 1 (119), . 13 – 25. .

https://doi.org/10.33136/stma2020.01.013 7. Fleeman Eugene L. Tactical missile design. Second Edition. Lilburn, Georgia: AIAA Education series. 2006. 469 p.

8. . . 9. . ., 10. . .

. .: , 1981. 496 .

11. Tewari Ashish. Advanced control of aircraft, spacecraft and rockets. Kanpur: John Wiley & Sons, 2011. 456 p. https://doi.org/10.1002/9781119971191

12. - . .

168 .

28.11.2024, 11.12.2024

-

,