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Розглянуто завдання керування розгортанням стрижневих конструкцій космічного застосування, що 

трансформуються. Прикладом таких конструкцій є ферма сітчатої антени, яка розгортається за допомого 

системи з тросів та шківів.  

Метою дослідження є розробка на основі методології навчання з підкріпленням (НЗП) 
інтелектуального агенту (ІА), який забезпечує розгортання та утримання в розгорнутому положенні 

розглянутої конструкції з урахуванням заданих вимог. Основними вимогами є час розгортання та 

мінімальні кутові швидкості стрижнів V-подібного складання на кінцевому етапі розгортання конструкції. 
Під час проведення досліджень використано методи моделювання динаміки систем зв’язаних тіл, 

теорії керування, навчання з підкріпленням та комп'ютерного моделювання. 

Продемонстровано можливість використання методології НЗП для подолання низки складнощів, 
притаманних традиційним підходам при керуванні розгортанням стрижневих конструкцій, що 

трансформуються. Зокрема, НЗП дає змогу оптимізувати систему розгортання з використанням моделей, 

отриманих за допомогою спеціалізованого програмного забезпечення для моделювання динаміки систем 
зв’язаних тіл, враховуючи необхідні критерії та обмеження.  

Особливості використання такого підходу для керування розгортанням стрижневих конструкцій 
досліджено з використанням спрощеної моделі однієї секції сітчатої антени, що трансформується. ІА 

побудовано на базі архітектури виконавець–критик. Запропонована структура нейронних мереж IA, що 

забезпечують реалізацію обмежень на керуючі впливи та стійкість процесу навчання. При навчанні IA 
застосовано алгоритм оптимізації найближчих політик. Розглянуто різні випадки, що відрізняються 

функціями вартості, функціями активації виконавця, параметрами тертя в шарнірах.  

У тих випадках, коли динамічні властивості моделі та реальної структури суттєво відрізняються, ІА 
можливо довчити. Ця операція може бути реалізована шляхом розгортання реальної структури, оскільки 

IA вимагає значно менше спроб для остаточного точного налаштування, ніж для попереднього навчання. 

Практична цінність отриманих результатів полягає в тому, що вони дозволяють пришвидшити 
розробку систем керування розгортанням космічних конструкцій та підвищити якість цих процесів з 

урахуванням необхідних критеріїв. 

Ключові слова: конструкція, що трансформується; навчання з підкріпленням; нейронна мережа; 
керування розгортанням. 

The task of controlling the deployment of transformable rod structures for space applications is studied. An 

example of such structures is a mesh antenna truss, which is deployed using a cable-pulley system. 
The aim of the study is to develop an intelligent agent (IA) based on the reinforcement learning (RL) 

methodology, which ensures the deployment and maintenance of the structure under consideration in the deployed 

position, taking into account the specified requirements. The main requirements are the deployment time and the 
minimum angular velocities of the V-folding rods at the final stage of the structure deployment. 

During the research, methods of dynamic modeling of multibody systems, control theory, reinforcement 

learning, and computer simulation were used. 
The possibility of using the RL methodology to overcome a number of difficulties inherent in traditional 

approaches to controlling the deployment of transformable rod structures is demonstrated. In particular, the RL 

allows optimizing the deployment system using models obtained using specialized software for modeling of the 
multibody dynamics, taking into account the necessary criteria and constraints. 

The features of this approach to controling the deployment of rod structures were investigated using a 

simplified model of one section of a transformable mesh antenna. The AI was designed on the basis of the actor-
critic architecture. The structure of AI neural networks was proposed, which ensure the implementation of 
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constraints on control actions and the stability of the learning process. Proximal policy optimization algorithm is 
used for training the IA. Various cases are investigated, which differ in cost functions, actor activation functions, 

and friction parameters of the joints.  

In cases where the dynamic properties of the model and the real structure differ significantly, the AI can be 
fine-tuned. This operation can be implemented by deploying the real structure, since the AI requires significantly 

fewer attempts for final fine-tuning than for preliminary training. 

The practical value of the obtained results is that they allow facilitating the development of space structure 
deployment control systems and improve their performance according to different specified criteria. 

Keywords: transformable structure; reinforcement learning; neural network; deployment control. 

Introduction. Investigation of autonomous deployable lightweight structures 

has emerged as a leading focus in aerospace engineering in recent years. A 

deployable lightweight structural system fundamentally consists of an integrated 

structure and mechanisms. It can be easily transported and stored in a compact, 

stowed state, while allowing for a considerably larger operational configuration 

once deployed. These features have garnered significant attention from numerous 

researchers in the field of deployable lightweight structures. 

Mesh reflector antennas have been extensively utilized in space applications due 

to their different advantages such as a large aperture size, minimal total mass, 

compact stowed volume, and reduced surface distortion [1–4]. The antenna 

transitions from a stowed state to a fully deployed position, ultimately creating the 

necessary functional surface. This deployment process significantly influences the 

performance of antennas in orbit. 

Structural deployment is typically executed through various active control 

mechanisms, utilizing different types of actuators such as active struts and cables, to 

ensure a rapid and secure deployment process. 

The process of the antenna deployment is inherently complex, involving both 

mechanical and structural considerations, and is susceptible to potential malfunctions 

[5]. It is essential that the angular speed and acceleration during deployment are 

controlled to ensure a smooth operation. Additionally, the angular acceleration must 

remain within specified limits to prevent excessive impact, which could result in 

vibrations or damage of the antenna [6]. Consequently, it is crucial to develop an 

effective control algorithm that facilitates precise and smooth deployment. 

Efficient and precise deployment in orbit is essential for the proper functioning 

of antennas. A well-defined deployment strategy is crucial to establish the kinematic 

behavior of the deployment process and the loading characteristics of the driving 

force [7]. Additionally, a satellite system's energy needs encompass power for 

efficient load management, communication, and the maintenance of satellite attitude. 

For satellites equipped with large deployment antennas, the energy required for 

antenna deployment is a crucial factor. Therefore, the antenna deployment should be 

designed in such a way as to minimize the deployment impact on the structure to 

limit the peak power required for the deployment mechanism. 

In Ref [8], a decoupling control approach is introduced for the precise 

deployment of space flexible antennas. The rigid and flexible controllers are 

developed based on the distinct characteristics of the decoupled feedback. The rigid 

controller guarantees that the antenna follows a predetermined trajectory, while the 

flexible controller mitigates flexural vibrations. 

A force-controlled approach is introduced in Ref [9] and the relationship 

between the driving force and the deployment motion of the reflector is established. 

The driving force variations are determined based on the planned deployment 

motion. The deployment dynamics of the deployable mesh antenna are simulated, 

and the influences of initial velocity, damping, and gravity on the deployment 

process are analyzed. 
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The interdependent relationship between the antenna structure, deployment 

trajectory, and control system is examined in Ref [10]. A multi-objective function is 

established to concurrently minimize the antenna's mass, the impacts on the antenna, 

and the energy dissipation within the control system. The design variables are 

identified as the cross-sectional areas of the links, Bezier control points, and 

controller gain parameters. 

An optimization approach for the winding strategy of the driving cable is 

introduced in Ref [11] for an AstroMesh-type antenna. The driving force is derived 

from principles of energy conservation, considering the influences of the cable nets 

and friction. An optimization model is developed with the goal to minimize the 

power required for deployment. 

A symplectic instantaneous optimal control approach is proposed in Ref [12] for 

the deployment of structures utilizing sliding cable actuators. The initial continuous 

control task is transformed into a sequence of constrained symplectic instantaneous 

optimal control problems at each time interval, ensuring compliance with the input 

saturation inequality constraints. 

Despite a significant progress in the field of the deployment control of rod 

structures, the use of the approaches described above causes significant difficulties 

when applied to complex structures, the model of which is obtained using software 

packages for modeling the dynamics of multibody systems. In addition, these results 

do not offer a way to further adjust the deployment algorithms considering the 

difference in the dynamic properties of the model and the real structure. 

Currently, deep learning methods [13] are successfully used for various control 

tasks in space [14, 15]. For such tasks, both supervised learning [16] and 

reinforcement learning (RL) [17–19] methods are utilized. The latter group of 

methods allows obtaining control laws by applying a sequence of control actions to 

the plant, which can be implemented using either a model or a real structure. Given 

the potential of deep learning and the noted problems in applying conventional 

methods, it is of interest to analyze the feasibility of using RL to control the 

deployment of rod structures for space applications. 

Problem statement. A mesh antenna (Fig. 1) from Ref [20] is considered as a 

transformable structure in this study. The reflective mesh (2) of this antenna is 

connected to a cable network framework, which is held in tension through a 

deployable ring truss (1) and tension ties. A cable-pulley system (CPS) is employed 

to transform the energy generated by electric motors (3) into the driving forces for 

the truss deployment (Fig. 2).  

 

Fig. 1 – Mesh antenna 
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Fig. 2 – Driving cable-pulley system 

Using the absolute nodal coordinate formulation (ANCF) the dynamic 

equations for the whole structure can be expressed as a set of differential-algebraic 

equations with a constant mass matrix as follows [21] 

 ( , ) ( , , ) ( , ) ( )ХM X t X D X X T C X t Ф V t , (1) 

 ( )Ф Х 0 ,  (2) 

where M  is a constant mass matrix of the system;q  is the generalized coordinates 

of the whole multibody system;Q q  is the elastic force vector of the flexible 

bodies; ,Ф q t  is the constraint vector of the system; qФ  is the derivative matrix 

of the constraint vector with respect to the generalized coordinates q ;  is the 

Lagrange multiplier vector; ,F q q  is the generalized external force vector; Q q  

is the Jacobian of the elastic force,d  is the damping coefficient. 

The model (1, 2) is a large dimensional system and its deriviation is a 

cumbersome task. To facilitate such tasks, specialized software is used for 

multibody dynamics simulations [22, 23]. Such software has tools that allow 

finding control actions that ensure the motion of the system along a specified 

trajectory. Figure 4 shows the variations of the control torques in the hinges of the 

V-folding rods found using such a tool, which ensure the deployment of the 

structure with a parabolic variation of the angular velocities (Fig. 3). However, the 

practical implementation of such control using a CPS is not possible, since it 

cannot apply torques of different signs. 

 

 
Fig. 3 – State variation 

 
Fig. 4 – Torque variation 

 

When using such a deployment system, it is necessary to solve an optimization 

problem considering constraints on control actions. Existing algorithms for solving 

such a problem require a plant model in the following form [24]: 

 ,k k kq f q U1 ,  (3) 

where k is the sample number of the discrete system. 
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However, the software for multibody dynamics simulations provides a model 

in the following form: 

 , , , ,...,k kq f q U U U U1 0 0 1 2 . (4) 

Thus, before finding the optimal control kU  that transfers the system from the 

state kq  to 1kq , it is necessary to find some sequence of control actions 

1210 ,...,,, kUUUU  that ensures the system motion from the initial state  to the 

required kq . This feature complicates the application of conventional 

methodology. This difficulty can be overcome using the RL methodology, since it 

is based on the analysis of the following Markov decision process 

, , , ; , ;...; ,n n nq U q C U q C U q C0 0 1 1 1 2 2 1
. 

As a result of the RL, it is necessary to find such a sequence of actions  that 

minimize cumulative cost 
n

i iC1
 of completing the task. The cost iC  here is a 

value of the selected optimality criterion. 

To study the possibility of using such an approach to control the deployment 

of rod structures, we consider a simplified model of one section of a transformable 

antenna (Fig. 5). All rods of the structure are modeled as rigid bodies. The impacts 

of the cable deployment system are modeled as identical torques in the hinges of 

the V-folding rods, and the values of these torque can be only take positive. In 

addition to the control torques, the torques of viscous friction are applied in the 

hinges. The model also takes into account constraints on the maximum angle 

between the V-folding rods. 
 

 
 

Fig. 5 – Simplified model. 

 

This model is built using the open source package HotInt [22].  

The aim of this study is to develop an RL-based intelligent agent (IA), which 

ensures the deployment and maintenance in the deployed position of the considered 

structure taking into account the specified requirements. The main requirements are 

the deployment time and the minimum angular velocities of V-folding rods at the 

final stage of deployment. 
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Table 1. Parameters of the structure. 

Parameter Value Units 

Section height 0.63 m 

Length of the diagonal rod 0.4275 m 

Outer diameter of the diagonal rod 0.01 m 

Inner diameter of the diagonal rod 0.00915 m 

Length of the horizontal rod 0.2889 m 

Outer diameter of the horizontal rod 0.012 m 

Inner diameter of the horizontal rod 0.01115 m 

Rod density 1800 kg/m
3
 

 

Reinforcement learning based control. The RL control framework operates 

under the premise that the control system acquires knowledge by examining the 

outcomes of its actions [25]. These outcomes are assessed through a scalar signal 

known as reinforcement, which is provided by the plant that the control system 

engages with. This reinforcement signal serves as a benchmark, enabling the 

intelligent control system to adjust its control algorithms in light of progress toward 

achieving long-term objectives. 

A general RL algorithm is illustrated in Fig. 2 and consists of the following 

steps: 

1) At time kt , the system is in state kX ; 

2) In this state, the control system chooses one of the available control actions 

kU ; 

3) The control system executes this action, resulting in the system transitioning 

to a new state 1kX , while also receiving a reinforcement signal kC ; 

4) The algorithm then either continues from step 2, incorporating the received 

reinforcement, or terminates if the new state is designated as final. 

We denote  as a set of states, and A  as a set of control actions. Then the 

reinforcement kC  is a consequence of the action kU  selected in the state kX . 

The reinforcement signal is a function that depends on a vector defined in the 

space A . 

 
Fig. 6 – Reinforcement learning setup 

 

The control system selects actions aimed at reducing the overall cost, which is 

calculated in the following manner:  

02
2

1 .10,...
i ik

i
kkkk CCCCG  

The discount factor γ plays a crucial role in assessing the significance of the 

predicted cost values when choosing control actions. A fundamental component of 
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RL is a value function. Consider that in each state kX , the system controller (SC) 

implements a control action based on a specific algorithm known as a policy  

,k kU X  

then the value function calculates the overall cost incurred when transitioning from 

the initial state kX  by choosing control actions in accordance with the policy . 

This function can be expressed as:  

( ) , ( , ) ( ).k

k k i k i k i k k k k ii
V X C X U C X U V X

0
 

Reinforcement learning can be executed through an actor-critic framework. In 

this setup, the critic estimates the value function for each state, while the actor 

translates the state vector into corresponding control actions.  

In the framework of deep RL, the actor and critic are represented as 

feedforward multilayer neural networks, which serve to approximate the control 

policy and the cost function, respectively:  

( , ), ( , ),k kV X X  

where ,  are the vectors of critic and actor parameters, respectively. 

This research employs the Proximal Policy Optimization (PPO) algorithm 

[26]. The implementation of this algorithm is carried out as follows: 

1. To determine the total cost of tG  as the sum of the cost for this time step 

and the discounted future cost [27]  

( , ),
ts m k t N t

t k ts Nk t
G C b V X1  

where b  equals 0 when 
ts NX  represents the final state, and equals 1 in all other 

cases. In other words, when ts NX is not the final state, the discounted future value 

incorporates a function of the discounted state value, which is determined using the 

critic neural network V . 

2. To find the advantage function tD  

( , ).t t tD G V X  

3. To adjust the critic parameters by minimizing the loss function criticL  

across all received mini-batch data.  

( , ) .
M

critic i ii
L G V X

M

2

1

1
 

4. To update the actor parameters by minimizing the actor loss function 

actorL  of all received mini-batch data as follows  

min , ,
M

actor i i i ii
L r D c D

M 1

1
 

| ,
,

| ,

i i

i

i i old

U X
r

U X
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max min , , ,i ic r 1 1  

where iD  and iG  are the advantage and total cost function for the i-th element of 

the mini-batch, respectively; | ,i iU X  is the probability of executing the action 

iU  in the state iX , given the updated policy parameters ; | ,i i oldU X  is the 

probability of action iU  in state iX , given the previous policy parameters old  

prior to the current learning epoch;  is the clipping parameter. 

The actor and critic are implemented in a form of artificial neural networks 

(NN), the architectures of which presented in Fig. 7. Since the AI agent behave 

stochastically during training the actor outputs mean value and standard deviation 

of the control actions. The AI receives the following state vector ,
T

iX , 

where is the angle the V-folding rods. 

 
a 

 
 

b 

Fig. 7 – Critic and actor NN architecture 

Table 2 and 3 summarize information about neuron numbers used in each 

layer of the NNs. 

 
Table. 2. Number of neurons in FC layers of the critic 

Layer CriticInput Layer1 Layer2 Layer3 CriticOutput 

Number of neurons 2 20 14 10 1 

 
Table. 3. Number of neurons in FC layers of the actor 

Layer obsInLyr fc meanPthInLyr fc_1 fc_2 stdPthInLyr fc_3 fc_4 
Number of 
neurons 2 32 32 16 1 32 16 1 

 

The following cost functions are used for training the AI: 

Cost 1 

d d d dif t t and or t t and 0  then 1kC  else 

1kC , 



71 

 

where dt  is the deployment time; d  is the V-folding rod latching angle; 

 

Cost 2 

d d d dif t t and or t t and 0  then k
T
kk RUUC 1  

else k
T
kk RUUC 1 , 

where R  is the control action weight; 

 

Cost 3 

pk
T
kk

T
kk ttifRUURXXC 1  then 11, RRQQ  else 22, RRQQ  

where pt  is the time, when the weights switch from 1Q , 1R  to 2Q , 2R . 

When Cost 1 is used the IA receives +1 reward if the structure deploys during 

the specified time and  penalty on that intervals when time deployment 

requirements are violated. Cost 2 similar to Cost 1, but also penalizes control 

actions.  Cost 3 is a quadratic criterion with switching weights that penalize state 

errors and control actions.  

 

Simulation results. To study the feasibility of the RL approach to control the 

deployment of rod structures, various cases presented in Table 4 are considered. 

These cases differ in the cost functions, friction coefficients in the hinges of the V-

folding rods, and actor activation functions. The nominal deployment time for all 

cases is 10 s. 
Table. 4 – Case description 

Case 

No 
Cost 

Friction 

coefficient,  

[ ] 

Actor output 

    , c 
Mean 

Standard  

Deviation 

1 1 0 
Tanh+ 

scaling(0.5) 

Tanh+ 

scaling(0.1) 
- - - - - 

2 2 0 
Tanh+ 

scaling(0.5) 

Tanh+ 

scaling(0.1) 
- - 1 1 - 

3 3 0.001 
Tanh+ 

scaling(0.5) 

Tanh+ 

scaling(0.1) 

diag 

[1,1] 

diag 

[1;8] 
1 1 8 

4 3 0.0005 
Tanh+ 

scaling(0.5) 

Tanh+ 

scaling(0.1) 

diag 

[1,1] 

diag 

[1;8] 
1 1 8 

5 3 0.0015 
Tanh+ 

scaling(0.5) 

Tanh+ 

scaling(0.1) 

diag 

[1,1] 

diag 

[1;8] 
1 1 8 

6 3 0.001 
Tanh+ 

scaling(0.5) 

Tanh+ 

scaling(0.05) 

diag 

[1,1] 

diag 

[1;8] 
1 1 8 

7 3 0.0015 
Tanh+ 

scaling(0.5) 
SoftPlus 

diag 

[1,1] 

diag 

[1;8] 
2.5 2.5 8 

8 3 0.001 SoftPlus SoftPlus 
diag 

[1,1] 

diag 

[1;8] 
2.5 2.5 8 

9 3 0.0005 SoftPlus SoftPlus 
diag 

[1,1] 

diag 

[1;8] 
1.5 1.5 8 

 

Figures 8, 9 show the results of deployment using the IA in Case 1. As can be 

seen from Fig. 8, this IA ensures the deployment of the structure in a given time, 

but at the same time, V-folding rods rotate with a high angular velocity before they 

latch, which is undesirable because it increases the loads on the structure. It is 

possible to reduce these angular velocities by training the IA using Cost 2. Figures 
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9, 10 demonstrate the results of the structure deployment using such an IA. As can 

be seen from Fig. 8–11, in Case 2, the angular velocities and control torque are less 

than in case 1. In both cases, the deployment is performed in the required time. 

 

 
Fig. 8 – State variation in Case 1 

 
Fig. 9 – Torque variation in Case 1 

 

 
Fig. 10 – State variation in Case 2 

 

Fig. 11 – Torque variation in Case 2 

As can be seen from Fig. 12, 13, when IA is trained using Cost 3, it deploys 

the structure in the specified time and ensures smoother variations of angular 

velocities and control torques than when Cost 1 and Cost 2 are used. 

  

 
Fig. 12 – State variation in Case 3 

 
Fig. 13 – Torque variation in Case 3 

Case 4 corresponds to the situation when the friction coefficient during 

deployment testing is lower than during training. It is evident from Fig. 14 that in 

this case the deployment of the structure occurs significantly faster than required. 

In addition, at the end of deployment, high angular velocities of the hinge elements 

are observed. 

  

 
Fig. 14 – State variation in Case 4  

 
Fig. 15 – Torque variation in Case 4  

In case 5, the friction coefficient during deployment testing is greater than 

during training. From Fig. 16, it is clear that in this case, the deployment of the 

structure is not completed within the specified time. For such cases, the IA has to 
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be trained additionally. As can be seen from Fig. 18, 19, the IA in both cases 

requires about 300 additional training episodes in order to be able to deploy the 

structure in a given time. In this case the control weights were altered to 0.5. 

 

 
Fig. 16 – State variation in Case 5  

 
Fig. 17 – Torque variation in Case 5  

 

 
Fig. 18 –  Reward variation during 

additional training in Case 4 

 
Fig. 19 – Reward variation during additional 

training in Case 5 

 

 
Fig. 20 – State variation for additionaly 

trained IA in Case 5  

 
Fig. 21 – Torque variation for additionaly 

trained IA in Case 5  

Figures 22–25 show variation of the comulitive reward during training of the 

IA using different activation functions at the actor's output. From Figure 22 it is 

clear that limiting the standard deviation of control actions of the IA in the range of 

[0...1] ensures a stable training process. At the same time, a greater costrain  on  the 

standard deviation of control actions not only slows down the training process, but 

also makes it less stable. This is clear from Fig. 23, where during training of the IA 

the standard deviation of control actions is limited to the range of [0...0.1]. 

Figures 24–25 show cases where the standard deviation of the control actions 

of the IA is not constrained. In this case, the IA learns faster than in case 3 because 

it expore state-action space more actively, but its performace may detereorate 

during trainig. 

 
Fig. 22 – Reward variation during training 

in Case 3  

 

 
Fig. 23 – Reward variation during training in 

Case 6  
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Fig. 24 – Reward variation during training 

in Case 7  

 

 
Fig. 25 – Reward variation during training in 

Case 8 

 

 

  

 
Fig. 26 – State variation in Case 8  

 

 
Fig. 27 – Torque variation in Case 8   

 

 
Fig. 28 – State variation in Case 9  

 
Fig. 29 – Torque variation in Case 9  

 

  

 
Fig. 30 – Reward variation during additional training in Case 9  

 

Figures 26–30 show the results for the IA, when  SoftPlus functions are used at 

for both mean and the standard deviation output of the NN actor. Such activation 

functions constrain the output to the region of positive values. It can be seen from 

Fig. 26 that such an IA provides the deployment of the structure in a given time, 

while the control torque varies faster from the maximum to the minimum value 

(Fig. 27). As in the previously considered cases, the application of this IA to a 

system with less friction leads to the fact that the structure deploys faster than 

required. An attempt to additionally train the IA In case 9 was not as successful in 

comparison with the previously considered cases in terms of the requied episodes 

and stability. 

Thus, it can be concluded that tanh activation functions  with a subsequent 

scaling layer are the  best option for the actor's output. Such architecture allows for 
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limiting control actions taking into account the their technical implementation, as 

well as ensuring fast and stable IA learning. 

Conclusion. The article demonstrates the possibility of using the RL 

methodology to control the deployment of rod transformable structures, which 

allows overcoming a number of shortcomings inherent in the conventional 

methodology. In particular, the RL makes it possible to optimize the deployment 

system using models obtained using specialized software for multibody dynamic 

simulation, considering the necessary criteria and constrains. In cases where the 

dynamic properties of the model and the real structure differ significantly, the IA 

can be fine-tuned. This operation can be implemented through the deployment of 

the real structure, since the IA requires significantly fewer attempts for the fine-

tuning than for the pre-training. 

 
1. Puig L., Barton A., Rando N. A review on large deployable structures for astrophysics missions, Acta 

Astronautica. 2010.Vol. 67, Is. 1–2. Рp.12–26. https://doi.org/10.1016/j.actaastro.2010.02.021 
2. Meguro A., Harada S., Watanabe M. Key technologies for high-accuracy large mesh antenna reflectors. Acta 

Astronautica. 2003. Vol. 53. Р.899–908. https://doi.org/10.1016/s0094-5765(02)00211-4 

3. Scialino L., Ihle A., Migliorelli M., Gatti N., Datashvili L., Klooster K., Santiago Prowald J. Large deployable 

reflectors for telecom and earth observation applications. CEAS Space Journal. 2013. 5. Р. 125–146. 

https://doi.org/10.1007/s12567-013-0044-7 

4. Thomson M. The AstroMesh deployable reflector. IEEE Antennas Propag. Soc. 2003. 3. 
https://doi.org/10.1109/aps.1999.838231 

5. Medzmariashvili E., Tserodze S., Sushko A. et al. Structure, structural features, assembling, and bench testing of 
the deployable space reflector. CEAS Space J. 2024. https://doi.org/10.1007/s12567-024-00575-7 

6. Rivera A., Stewart A. Study of Spacecraft Deployables Failures. 19th European Space Mechanisms and 

Tribology Symposium, Online, September 20–24th, 2021. https://doi.org/10.5281/ZENODO.11425012 
7. Khoroshylov S., Martyniuk S., Sushko O., at al. Dynamics and attitude control of space-based synthetic aperture 

radar. Nonlinear Engineering. 2023. Vol. 12 (1). 20220277. https://doi.org/10.1515/nleng-2022-0277 

8. Zhang Y., Duan B., Li T. A controlled deployment method for flexible deployable space antennas. Acta 
Astronautica. 2012. Vol.81, Is.1. Рp.19–29.  https://doi.org/10.1016/j.actaastro.2012.05.033 

9. Li T. Deployment analysis and control of deployable space antenna. Aerospace Science and Technology. 2012. 

Vol. 18, Is. 1. pp.42–47. https://doi.org/10.1016/j.ast.2011.04.001 
10. Zhang Y., Yang D., Li S. An integrated control and structural design approach for mesh reflector deployable 

space antennas. Mechatronics. 2016. Vol. 35. Рp.71–81. https://doi.org/10.1016/j.mechatronics.2015.12.009 

11. Zhang Y., Yang D., Sun Z., Li N., Du J.: Winding strategy of driving cable based on dynamic analysis of 
deployment for deployable antennas. Journal of mechanical science and technology. 2019. Vol. 33. Рp.5147–

5156. https://doi.org/10.1007/s12206-019-0906-9 

12. Peng H., Li F., Kan Z., Liu P. Symplectic Instantaneous Optimal Control of Deployable Structures Driven by 
Sliding Cable Actuators. Journal of Guidance, Control, and Dynamics. 2020. Vol. 43. Рp.1114–1128. 

https://doi.org/10.2514/1.g004872 

13. Goodfellow I., Bengio Y. A. Deep Learning. Eds. Courville. The MIT press. 2016. ISBN 978-0262035613. 
14. Khoroshylov S. V., Redka M. O. Deep learning for space guidance, navigation, and control. Space Science and 

Technology. 2021. Vol. 27, № 6 (133). Рp.38–52. https://doi.org/10.15407/knit2021.06.038 

15. Izzo D., Märtens M., Pan B. A survey on artificial intelligence trends in spacecraft guidance dynamics and 
control. Astrodyn. 2019. Vol. 3. Рp.287–299.  https://doi.org/10.1007/s42064-018-0053-6  

16. Redka M. O., Khoroshylov S. V. Determination of the force impact of an ion thruster plume on an orbital object 

via deep learning. Space Science and Technology. 2022. Vol. 28, № 5 (138). Рp.15–26. 
https://doi.org/10.15407/knit2022.05.015 

17. Khoroshylov S. V., Wang C. Spacecraft relative on-off control via reinforcement learning. Space Science and 

Technology. 2024. Vol. 30, № 2 (147). Рp.3–14. https://doi.org/10.15407/knit2024.02.003 
18. Liu Y., Ma G., Lyu Y., et al. Neural network-based reinforcement learning control for combined spacecraft attitude 

tracking maneuvers. Neurocomputing 484. 2022. Рp.67–78. https://doi.org/10.1016/j.neucom.2021.07.099 

19. Gaudet, B., Linares, R., Furfaro, R.  Six degree-of-freedom body-fixed hovering over unmapped asteroids via 
lidar altimetry and reinforcement meta-learning. Acta Astronaut. 2020. Vol. 172. Рp.90–99. 

https://doi.org/10.1016/j.actaastro.2020.03.026 

20. Sushko, O., Medzmariashvili, E., Filipenko, L, et al. Modified design of the deployable mesh reflector antenna 

for mini satellites. CEAS Space Journal. 2021. Vol. 13. Рp.533–542. https://doi.org/10.1007/s12567-020-

00346-0 

21. Khoroshylov S., Martyniuk S., Medzmariashvili E. et al. Deployment modeling and analysis of mesh antenna 
consisting of scissor-like and V-folding elements. CEAS Space J. 2024. https://doi.org/10.1007/s12567-024-

00584-6 

22. Gerstmayr J., Dorninger A., Eder R. et al. HOTINT: A Script Language Based Framework for the 
Simulationof Multibody Dynamics Systems. ASME IDETC/CIE. 2013. V. 7B, V07BT10A047. 

https://doi.org/10.1115/DETC2013-12299  

https://doi.org/10.1109/aps.1999.838231
https://doi.org/10.1007/s12567-024-00575-
https://doi.org/10.1515/nleng-2022-0277
https://doi.org/10.1016/j.actaastro.2012.05.033
https://doi.org/10.1016/j.mechatronics.2015.12.009
https://doi.org/10.2514/1.g004872
https://doi.org/10.15407/knit2021.06.038
https://doi.org/10.15407/knit2022.05.015
https://doi.org/10.15407/knit2024.02.003
https://doi.org/10.1016/j.neucom.2021.07.099
https://doi.org/10.1016/j.actaastro.2020.03.026
https://doi.org/10.1007/s12567-020-00346-0
https://doi.org/10.1007/s12567-020-00346-0
https://doi.org/10.1007/s12567-024-00584-6
https://doi.org/10.1007/s12567-024-00584-6


76 
 

23. János Z., Rachholz R., Woernle C. Field test validation of Flex5, MSC. Adams, alaska/Wind and SIMPACK 
for load calculations on wind turbines. Wind Energy 19.7. 2016. Рp.1201–1222. 

https://doi.org/10.1002/we.1892 

24. Lewis F. L., Vrabie D., Syrmos V. L., Optimal Control, 3rd Edition. John Wiley & Sons, Inc., New York, USA, 
2012. https://doi.org/10.1002/9781118122631 

25. Sutton R. S., Barto A. G. Reinforcement learning: an introduction. Eds. MIT press, 1998. ISBN 978-

0262193986. 
26. Schulman J., Wolski F., Dhariwal P., Radford A., Klimov O. Proximal policy optimization algorithms. arXiv 

preprint. 2017. arXiv:1707.06347. 

27. Mnih V., Badia A., Mirza M., Graves A., Lillicrap T., Harley T., Silver D. Asynchronous Methods for Deep 
Reinforcement Learning. arXiv preprint. 2016. ArXiv:1602.01783. 

 
 Received on March 4, 2025, 

 in final form on March 24, 2025 

https://doi.org/10.1002/we.1892
https://doi.org/10.1002/9781118122631

