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Po3risiHyTO 3aBIAaHHS KEpYBaHHS PO3TOPTAHHIM CTPHKHEBHUX KOHCTPYKI[H KOCMIYHOTO 3aCTOCYBAHHS, IO
TpanchopMyroThest. [IprKIagoM TakHX KOHCTPYKLiH € depma ciT4aToi aHTEHH, sIKa PO3TOPTAETHCS 3a JOIOMOrO
CHCTEMH 3 TPOCIB Ta IIKIiBiB.

Meroro [IOCHDKEHHS € po3poOka Ha OCHOBI Meronosorii HaB4aHHS 3 migkpimrenHsM (H3II)
inTenexkryanpHoro areHty (IA), sikmii 3a0esmedye poO3ropTaHHS Ta YTPUMAHHS B PO3TOPHYTOMY IOJIOKCHHI
PO3MIISIHYTOI KOHCTPYKILIi 3 ypaxyBaHHSAM 3ajaHuX BUMOr. OCHOBHMMH BHMMOIaMH € 4ac pO3TOPTAHHSA Ta
MiHIMaJbHI KyTOBI IIBUAKOCTI CTPIIKHIB V-NIOAIOHOTO CKJIaJaHHs Ha KiHIIEBOMY €Talli pO3ropTaHHs KOHCTPYKIIi.

Tlig yac mpoBemeHHs JOCIIPKEHb BUKOPHCTAHO METOIHM MOJCIOBAHHS AMHAMIKM CHCTEM 3B’S3aHHX Till,
Teopil KepyBaHHs, HABYAHHS 3 MMiAKPIIUICHHSM Ta KOMITTOTEPHOTO MOJCTIOBAHHS.

TIpoteMOHCTPOBaHO MOXJIMBICTh BHKOpUCTaHHs Merozosorii H3II juist mogoiaHHs HH3KHM CKIJIQHOILIB,
[PUTAMAHHAX TPAMMLIMHAM MiIX0JaM INpH KepyBaHHI pO3TOPTAHHSAM CTPHKHEBHUX KOHCTPYKIiH, IO
TpaHchopmyroThest. 3okpema, H3II qae 3Mory ontumisyBaTH CHCTEMY PO3TOPTAaHHS 3 BUKOPHCTAHHSIM MOIENCH,
OTPUMaHHUX 3a JONOMOIOI0 CIIELialli30BAHOTO MPOrPaMHOTO 3a0e3MedeHHs Ul MOJENIOBAHHS JUHAMIKH CHCTEM
3B’sI3aHMX TiJI, BpPaXOBYIOUHM HEOOXiHI KpHTepii Ta OOMeXKEHHSI.

Oco0nMBOCTI BUKOPHUCTAHHS TaKOrO IJIXOLY UL KepYBaHHS PO3TOPTAHHSIM CTPHKHEBHUX KOHCTPYKLIH
JIOCITIDKEHO 3 BHKOPHCTAHHSIM CIIPOLICHOI MOAENi ofHiei cekiii cityaTtoi aHTeHH, mo TpaHcdopmyerbes. [A
mo6yoBaHO Ha 6a3i apXiTEeKTypH BHKOHABELb—KPHUTHUK. 3allPOIIOHOBAaHA CTPYKTYpa HEHPOHHMX Mepex IA, o
3a0e3MeuyIoTh peaizaliio oOMeXeHb Ha Kepyroui BIUIMBH Ta CTIMKICTh mpouecy HaBuaHHs. [lpu HaBuanui 1A
3aCTOCOBAHO AITOPUTM ONTUMI3alil HAHOMIDKYMX MOMITHK. PO3MNIAHYTO pPi3HI BHMAOKH, IO BiAPi3HSIOTHCS
(yHKIITMI BapTOCTi, (DyHKIIIMHI aKTUBAIlil BAKOHABIIA, TapaMeTpaMy TepTs B IIapHipax.

VY THX BHNaJKaX, KOJIW JMHAMIYHI BIACTUBOCTI MOJIENI TA PEAIbHOI CTPYKTYPH CYTTEBO BiIPI3HAIOTHCH, IA
MOXIHMBO TOBYMTH. Ll omepariisi Moxe OyTH peanizoBaHa LUISIXOM PO3TOPTAHHS PEANbHOI CTPYKTYPH, OCKIJIbKH
IA BHMarae 3Ha9HO MEHIIIE CIIPOO [UIsT OCTATOYHOTO TOYHOTO HAJALITYBAHHS, HIX JUISI ITOIIEPEIHHOr0 HaBYaHHSI.

IpakTnyHa WiHHICTE OTPUMAHUX PE3Y/IbTATIB IOATA€ B TOMY, IO BOHM JO3BOJISIIOTH MPHIIBUALIMTA
PO3pOOKY CHCTEM KepyBaHHsS PO3TOPTaHHSAM KOCMIYHMX KOHCTPYKILIM Ta MiJBMIIUTH SIKICTh IMX IPOIECIB 3
YypaxyBaHHSIM HEOOXIJTHUX KPUTEPIiB.

Kniouosi cnosa: xoncmpykyis, wo mpancopmyemocs,; Haguanus 3 NIOKPINIeHHAM, HEUPOHHA Mepedcd;
KepyBaHHs PO320PMAHHIM.

The task of controlling the deployment of transformable rod structures for space applications is studied. An
example of such structures is a mesh antenna truss, which is deployed using a cable-pulley system.

The aim of the study is to develop an intelligent agent (IA) based on the reinforcement learning (RL)
methodology, which ensures the deployment and maintenance of the structure under consideration in the deployed
position, taking into account the specified requirements. The main requirements are the deployment time and the
minimum angular velocities of the V-folding rods at the final stage of the structure deployment.

During the research, methods of dynamic modeling of multibody systems, control theory, reinforcement
learning, and computer simulation were used.

The possibility of using the RL methodology to overcome a number of difficulties inherent in traditional
approaches to controlling the deployment of transformable rod structures is demonstrated. In particular, the RL
allows optimizing the deployment system using models obtained using specialized software for modeling of the
multibody dynamics, taking into account the necessary criteria and constraints.

The features of this approach to controling the deployment of rod structures were investigated using a
simplified model of one section of a transformable mesh antenna. The Al was designed on the basis of the actor-
critic architecture. The structure of Al neural networks was proposed, which ensure the implementation of
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constraints on control actions and the stability of the learning process. Proximal policy optimization algorithm is
used for training the IA. Various cases are investigated, which differ in cost functions, actor activation functions,
and friction parameters of the joints.

In cases where the dynamic properties of the model and the real structure differ significantly, the Al can be
fine-tuned. This operation can be implemented by deploying the real structure, since the Al requires significantly
fewer attempts for final fine-tuning than for preliminary training.

The practical value of the obtained results is that they allow facilitating the development of space structure
deployment control systems and improve their performance according to different specified criteria.

Keywords: transformable structure; reinforcement learning; neural network; deployment control.

Introduction. Investigation of autonomous deployable lightweight structures
has emerged as a leading focus in aerospace engineering in recent years. A
deployable lightweight structural system fundamentally consists of an integrated
structure and mechanisms. It can be easily transported and stored in a compact,
stowed state, while allowing for a considerably larger operational configuration
once deployed. These features have garnered significant attention from numerous
researchers in the field of deployable lightweight structures.

Mesh reflector antennas have been extensively utilized in space applications due
to their different advantages such as a large aperture size, minimal total mass,
compact stowed volume, and reduced surface distortion [1-4]. The antenna
transitions from a stowed state to a fully deployed position, ultimately creating the
necessary functional surface. This deployment process significantly influences the
performance of antennas in orbit.

Structural deployment is typically executed through various active control
mechanisms, utilizing different types of actuators such as active struts and cables, to
ensure a rapid and secure deployment process.

The process of the antenna deployment is inherently complex, involving both
mechanical and structural considerations, and is susceptible to potential malfunctions
[5]. It is essential that the angular speed and acceleration during deployment are
controlled to ensure a smooth operation. Additionally, the angular acceleration must
remain within specified limits to prevent excessive impact, which could result in
vibrations or damage of the antenna [6]. Consequently, it is crucial to develop an
effective control algorithm that facilitates precise and smooth deployment.

Efficient and precise deployment in orbit is essential for the proper functioning
of antennas. A well-defined deployment strategy is crucial to establish the kinematic
behavior of the deployment process and the loading characteristics of the driving
force [7]. Additionally, a satellite system's energy needs encompass power for
efficient load management, communication, and the maintenance of satellite attitude.

For satellites equipped with large deployment antennas, the energy required for
antenna deployment is a crucial factor. Therefore, the antenna deployment should be
designed in such a way as to minimize the deployment impact on the structure to
limit the peak power required for the deployment mechanism.

In Ref [8], a decoupling control approach is introduced for the precise
deployment of space flexible antennas. The rigid and flexible controllers are
developed based on the distinct characteristics of the decoupled feedback. The rigid
controller guarantees that the antenna follows a predetermined trajectory, while the
flexible controller mitigates flexural vibrations.

A force-controlled approach is introduced in Ref [9] and the relationship
between the driving force and the deployment motion of the reflector is established.
The driving force variations are determined based on the planned deployment
motion. The deployment dynamics of the deployable mesh antenna are simulated,
and the influences of initial velocity, damping, and gravity on the deployment
process are analyzed.
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The interdependent relationship between the antenna structure, deployment
trajectory, and control system is examined in Ref [10]. A multi-objective function is
established to concurrently minimize the antenna's mass, the impacts on the antenna,
and the energy dissipation within the control system. The design variables are
identified as the cross-sectional areas of the links, Bezier control points, and
controller gain parameters.

An optimization approach for the winding strategy of the driving cable is
introduced in Ref [11] for an AstroMesh-type antenna. The driving force is derived
from principles of energy conservation, considering the influences of the cable nets
and friction. An optimization model is developed with the goal to minimize the
power required for deployment.

A symplectic instantaneous optimal control approach is proposed in Ref [12] for
the deployment of structures utilizing sliding cable actuators. The initial continuous
control task is transformed into a sequence of constrained symplectic instantaneous
optimal control problems at each time interval, ensuring compliance with the input
saturation inequality constraints.

Despite a significant progress in the field of the deployment control of rod
structures, the use of the approaches described above causes significant difficulties
when applied to complex structures, the model of which is obtained using software
packages for modeling the dynamics of multibody systems. In addition, these results
do not offer a way to further adjust the deployment algorithms considering the
difference in the dynamic properties of the model and the real structure.

Currently, deep learning methods [13] are successfully used for various control
tasks in space [14, 15]. For such tasks, both supervised learning [16] and
reinforcement learning (RL) [17-19] methods are utilized. The latter group of
methods allows obtaining control laws by applying a sequence of control actions to
the plant, which can be implemented using either a model or a real structure. Given
the potential of deep learning and the noted problems in applying conventional
methods, it is of interest to analyze the feasibility of using RL to control the
deployment of rod structures for space applications.

Problem statement. A mesh antenna (Fig. 1) from Ref [20] is considered as a
transformable structure in this study. The reflective mesh (2) of this antenna is
connected to a cable network framework, which is held in tension through a
deployable ring truss (1) and tension ties. A cable-pulley system (CPS) is employed
to transform the energy generated by electric motors (3) into the driving forces for
the truss deployment (Fig. 2).
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Fig. 1 — Mesh antenna
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Fig. 2 — Driving cable-pulley system

Using the absolute nodal coordinate formulation (ANCF) the dynamic
equations for the whole structure can be expressed as a set of differential-algebraic
equations with a constant mass matrix as follows [21]

M(X, )X +D(X,X,T)+C(X,t) + D A=V (t), 1)
d(X)=0, 2

where M is a constant mass matrix of the system;q is the generalized coordinates
of the whole multibody system;® ¢ is the elastic force vector of the flexible
bodies; @ g,t is the constraint vector of the system; @, is the derivative matrix
of the constraint vector with respect to the generalized coordinates g ;A is the
Lagrange multiplier vector; F q,q is the generalized external force vector; @ ¢

is the Jacobian of the elastic force,d is the damping coefficient.

The model (1, 2) is a large dimensional system and its deriviation is a
cumbersome task. To facilitate such tasks, specialized software is used for
multibody dynamics simulations [22, 23]. Such software has tools that allow
finding control actions that ensure the motion of the system along a specified
trajectory. Figure 4 shows the variations of the control torques in the hinges of the
V-folding rods found using such a tool, which ensure the deployment of the
structure with a parabolic variation of the angular velocities (Fig. 3). However, the
practical implementation of such control using a CPS is not possible, since it
cannot apply torques of different signs.
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Fig. 3 — State variation Fig. 4 — Torque variation

When using such a deployment system, it is necessary to solve an optimization
problem considering constraints on control actions. Existing algorithms for solving
such a problem require a plant model in the following form [24]:

G =T 9,0, (3)

where k is the sample number of the discrete system.
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However, the software for multibody dynamics simulations provides a model
in the following form:

qk+1:f QO’UQ;Ul,UQ,...,Uk . (4)

Thus, before finding the optimal control U, that transfers the system from the
state g, to q,.q, it is necessary to find some sequence of control actions
UyUU,,..U,_4 that ensures the system motion from the initial state g, to the

required gq,. This feature complicates the application of conventional

methodology. This difficulty can be overcome using the RL methodology, since it
is based on the analysis of the following Markov decision process

9,.Uy.4,,.C;U,,9,C,;..5U, _1,q,C,

As a result of the RL, it is necessary to find such a sequence of actions U; that
minimize cumulative cost 27 C, of completing the task. The cost C; here is a
i=1

value of the selected optimality criterion.

To study the possibility of using such an approach to control the deployment
of rod structures, we consider a simplified model of one section of a transformable
antenna (Fig. 5). All rods of the structure are modeled as rigid bodies. The impacts
of the cable deployment system are modeled as identical torques in the hinges of
the V-folding rods, and the values of these torque can be only take positive. In
addition to the control torques, the torques of viscous friction are applied in the
hinges. The model also takes into account constraints on the maximum angle
between the V-folding rods.

Fig. 5 — Simplified model.

This model is built using the open source package Hotlnt [22].

The aim of this study is to develop an RL-based intelligent agent (1A), which
ensures the deployment and maintenance in the deployed position of the considered
structure taking into account the specified requirements. The main requirements are
the deployment time and the minimum angular velocities of V-folding rods at the
final stage of deployment.
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Table 1. Parameters of the structure.

Parameter Value Units
Section height 0.63 m
Length of the diagonal rod 0.4275 m
Outer diameter of the diagonal rod 0.01 m
Inner diameter of the diagonal rod 0.00915 m
Length of the horizontal rod 0.2889 m
Outer diameter of the horizontal rod 0.012 m
Inner diameter of the horizontal rod 0.01115 m
Rod density 1800 kg/m’

Reinforcement learning based control. The RL control framework operates
under the premise that the control system acquires knowledge by examining the
outcomes of its actions [25]. These outcomes are assessed through a scalar signal
known as reinforcement, which is provided by the plant that the control system
engages with. This reinforcement signal serves as a benchmark, enabling the
intelligent control system to adjust its control algorithms in light of progress toward
achieving long-term objectives.

A general RL algorithm is illustrated in Fig. 2 and consists of the following
steps:

1) Attimet, , the system is in state X, ;

2) In this state, the control system chooses one of the available control actions
U,

3) The control system executes this action, resulting in the system transitioning
to a new state X, , while also receiving a reinforcement signal C, ;

4) The algorithm then either continues from step 2, incorporating the received
reinforcement, or terminates if the new state is designated as final.

We denote y as a set of states, and A as a set of control actions. Then the

reinforcement C,, is a consequence of the action U, selected in the state X, .
The reinforcement signal is a function that depends on a vector defined in the

space yxA .
control
state| |cost action
X, G i U,
| Plant |+
X+

Fig. 6 — Reinforcement learning setup

The control system selects actions aimed at reducing the overall cost, which is
calculated in the following manner:

o0

Gk :Ck +'Yck+l+y20k+2 +“':Zi:0yick+i’ OS'YS].

The discount factor y plays a crucial role in assessing the significance of the
predicted cost values when choosing control actions. A fundamental component of
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RL is a value function. Consider that in each state X, , the system controller (SC)
implements a control action based on a specific algorithm known as a policy ©

U,=n X, ,

then the value function calculates the overall cost incurred when transitioning from
the initial state X, by choosing control actions in accordance with the policy = .
This function can be expressed as:

=C,(X,,U,)+yV" (Xk+i)'

k+i k+i1™ k+i

VX)) =2 V' Chi XU

Reinforcement learning can be executed through an actor-critic framework. In
this setup, the critic estimates the value function for each state, while the actor
translates the state vector into corresponding control actions.

In the framework of deep RL, the actor and critic are represented as
feedforward multilayer neural networks, which serve to approximate the control
policy and the cost function, respectively:

VX, 0),(X,,0),

where 0, ¢ are the vectors of critic and actor parameters, respectively.

This research employs the Proximal Policy Optimization (PPO) algorithm
[26]. The implementation of this algorithm is carried out as follows:

1. To determine the total cost of G, as the sum of the cost for this time step

and the discounted future cost [27]
G, =" e, +byV V(X 6),

where b equals 0 when X, represents the final state, and equals 1 in all other
cases. In other words, when X,__ .. is not the final state, the discounted future value

ts+N

incorporates a function of the discounted state value, which is determined using the
critic neural network V.

2. To find the advantage function D,
D, =G, -V (X,,6).

3. To adjust the critic parameters by minimizing the loss function L.,
across all received mini-batch data.

1 M 2
Lcritic e :ﬁzizl G _V(Xz’e) .

L

4. To update the actor parameters by minimizing the actor loss function
L, ofall received mini-batch data as follows

1 M .
Lactor ¢ :Mzizl -minr ¢ 'Diici ¢ 'Di )

n U, | X,,¢
e =—"
n Ui|Xi’(Pold
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¢,  =max mnr, ¢ 1+e ,1-¢,

where D; and G; are the advantage and total cost function for the i-th element of
the mini-batch, respectively; © U, | X,,¢ is the probability of executing the action
U, inthe state X, , given the updated policy parameters ¢; n U, | X,,0,, isthe

probability of action U; in state X, , given the previous policy parameters ¢4

prior to the current learning epoch; ¢ is the clipping parameter.

The actor and critic are implemented in a form of artificial neural networks
(NN), the architectures of which presented in Fig. 7. Since the Al agent behave
stochastically during training the actor outputs mean value and standard deviation

of the control actions. The Al receives the following state vector X, :[cl),(i)f,
where is the angle the V-folding rods.
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Fig. 7 — Critic and actor NN architecture

Table 2 and 3 summarize information about neuron numbers used in each
layer of the NNs.

Table. 2. Number of neurons in FC layers of the critic

Layer Criticlnput | Layerl | Layer2 | Layer3 | CriticOutput
Number of neurons 2 20 14 10 1

Table. 3. Number of neurons in FC layers of the actor
Layer |obsinLyr| fc |meanPthinLyr| fc 1 fc 2 |stdPthinLyr| fc 3 | fc 4

Number o
Neurons 2 32 32 16 1 32 16 1

The following cost functions are used for training the Al:
Cost1

if[ t<t, and ¢$=¢, or t>t, and ¢<¢, ]>O then C, =1 else
Ck =—1,
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where ¢ is the deployment time; ¢, is the V-folding rod latching angle;

Cost 2
if[ t<t, and ¢>¢, or t>t, and $<¢, ]>0 then C, =1-U} RU,

elseC, =-1-U{ RU,,,
where R is the control action weight;

Cost 3
C,=1-X},RX, -U,RU, if t <t, then @ =Q;,R =R, else @ =Q,,R =R,
where ty is the time, when the weights switch from @,, R, t0 @,, R,.

When Cost 1 is used the IA receives +1 reward if the structure deploys during
the specified time and —1 penalty on that intervals when time deployment
requirements are violated. Cost 2 similar to Cost 1, but also penalizes control
actions. Cost 3 is a quadratic criterion with switching weights that penalize state
errors and control actions.

Simulation results. To study the feasibility of the RL approach to control the
deployment of rod structures, various cases presented in Table 4 are considered.
These cases differ in the cost functions, friction coefficients in the hinges of the V-
folding rods, and actor activation functions. The nominal deployment time for all
cases is 10 s.

Table. 4 — Case description

Case Friction Actor output
N Cost | coefficient, Standard Q. Q, | Ri | Ry |ty C
0 Mean -
[Nms] Deviation
1 1 0 Tanh+ Tanh+ i i i i i
scaling(0.5) | scaling(0.1)
Tanh+ Tanh+
2 2 0 scaling(0.5) | scaling(0.1) i i L1
Tanh+ Tanh+ diag | diag
31 3 | 0001 | oling05) | scaling0.1) | (1] || Y]t |8
Tanh+ Tanh+ diag | diag
4 3 | 00005 oiling(0.5) | scaling0.) |1 |ue| Y]t |8
Tanh+ Tanh+ diag | diag
S | 3 | 00015 | cialing05) | scaling0.1) |[1a] | e | L] Y| 8
Tanh+ Tanh+ diag | diag
6 | 3 0.001 | caling(0.5) | scaling(0.05) | (141 | gy | L | * | 8
Tanh+ diag | diag
7 3 0.0015 scaling(0.5) SoftPlus (1] | (18] 25|25| 8
diag | diag
8 3 0.001 SoftPlus SoftPlus [1.1] | [1:8] 25125 8
diag | diag
9 3 0.0005 SoftPlus SoftPlus [1.1] | [1:8] 15115 8

Figures 8, 9 show the results of deployment using the 1A in Case 1. As can be

seen from Fig. 8, this 1A ensures the deployment of the structure in a given time,
but at the same time, V-folding rods rotate with a high angular velocity before they
latch, which is undesirable because it increases the loads on the structure. It is
possible to reduce these angular velocities by training the 1A using Cost 2. Figures
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9, 10 demonstrate the results of the structure deployment using such an IA. As can
be seen from Fig. 8-11, in Case 2, the angular velocities and control torque are less
than in case 1. In both cases, the deployment is performed in the required time.
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Fig. 10 — State variation in Case 2 Fig. 11 — Torque variation in Case 2

As can be seen from Fig. 12, 13, when 1A is trained using Cost 3, it deploys
the structure in the specified time and ensures smoother variations of angular
velocities and control torques than when Cost 1 and Cost 2 are used.
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Fig. 12 — State variation in Case 3 Fig. 13 — Torque variation in Case 3

Case 4 corresponds to the situation when the friction coefficient during
deployment testing is lower than during training. It is evident from Fig. 14 that in
this case the deployment of the structure occurs significantly faster than required.

In addition, at the end of deployment, high angular velocities of the hinge elements
are observed.
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Fig. 14 — State variation in Case 4 Fig. 15 — Torque variation in Case 4

In case 5, the friction coefficient during deployment testing is greater than
during training. From Fig. 16, it is clear that in this case, the deployment of the
structure is not completed within the specified time. For such cases, the IA has to
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be trained additionally. As can be seen from Fig. 18, 19, the IA in both cases
requires about 300 additional training episodes in order to be able to deploy the
structure in a given time. In this case the control weights were altered to 0.5.
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Fig. 16 — State variation in Case 5 Fig. 17 — Torque variation in Case 5
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Figures 22-25 show variation of the comulitive reward during training of the
IA using different activation functions at the actor's output. From Figure 22 it is
clear that limiting the standard deviation of control actions of the IA in the range of
[0...1] ensures a stable training process. At the same time, a greater costrain on the
standard deviation of control actions not only slows down the training process, but
also makes it less stable. This is clear from Fig. 23, where during training of the 1A
the standard deviation of control actions is limited to the range of [0...0.1].

Figures 24-25 show cases where the standard deviation of the control actions
of the 1A is not constrained. In this case, the IA learns faster than in case 3 because
it expore state-action space more actively, but its performace may detereorate
during trainig.
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Fig. 22 — Reward variation during training  Fig. 23 — Reward variation during training in
in Case 3 Case 6
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Figures 26-30 show the results for the 1A, when SoftPlus functions are used at
for both mean and the standard deviation output of the NN actor. Such activation
functions constrain the output to the region of positive values. It can be seen from
Fig. 26 that such an IA provides the deployment of the structure in a given time,
while the control torque varies faster from the maximum to the minimum value
(Fig. 27). As in the previously considered cases, the application of this IA to a
system with less friction leads to the fact that the structure deploys faster than
required. An attempt to additionally train the IA In case 9 was not as successful in
comparison with the previously considered cases in terms of the requied episodes
and stability.

Thus, it can be concluded that tanh activation functions with a subsequent
scaling layer are the best option for the actor's output. Such architecture allows for

74



limiting control actions taking into account the their technical implementation, as
well as ensuring fast and stable 1A learning.

Conclusion. The article demonstrates the possibility of using the RL
methodology to control the deployment of rod transformable structures, which
allows overcoming a number of shortcomings inherent in the conventional
methodology. In particular, the RL makes it possible to optimize the deployment
system using models obtained using specialized software for multibody dynamic
simulation, considering the necessary criteria and constrains. In cases where the
dynamic properties of the model and the real structure differ significantly, the IA
can be fine-tuned. This operation can be implemented through the deployment of
the real structure, since the IA requires significantly fewer attempts for the fine-
tuning than for the pre-training.
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