TECHNICAL MECHANICS
ISSN (Print): 1561-9184, ISSN (Online): 2616-6380

English
Russian
Ukrainian
Home > Journal Issues > ¹ 1 (2014) Technical mechanics > 5
___________________________________________________

UDC 533.6.697; 662.61

Technical mechanics, 2014, 1, 37 - 45

ON THE SELECTION OF KINETIC MODEL FOR HYDROGEN BURNING IN NUMERICAL SIMULATION OF SUPERSONIC NON-EQUILIBRIUM FLOW

Deshko A. Ye.

      ABSTRACT

      The non-equilibrium efflux of a supersonic air- hydrogen jet in a supersonic cocurrent flow through axisymmetrical variable-area channel is simulated using a march algorithm in the framework of stationary viscouslayer equations. The research aim is to select a rational kinetic model of hydrogen oxidizing in air oxygen for determination of the basic thermogasdynamic parameters of a turbulent non-equilibrium flow through channel with the minimum of computations. The kinetic models for hydrogen oxidizing in air oxygen in the framework of 8-9 chemical reactions are examined. The considered models are pretested in the framework of the model of an ideal reactor. Selection of a rational kinetic model of hydrogen combustion under the supersonic non-equilibrium flow through channel is grounded on comparison with the experimental data. The effects of water vapour content on the value of the induction period are studied. It is shown that addition of water vapour results in a decrease in delay of oxygen ignition. From the research results it is found that the kinetic model of hydrogen combustion involving 9 chemical reactions allows an adequate determination of the induction period and value of heat generation in the process of combustion through supersonic flow. The accuracy of setting an initial component content of a non-equilibrium gas mixture affects significantly the value of the induction period. Pdf (English)







      KEYWORDS

kinetic model of burning, ignition delay, model of viscous layer, march algorithm, experimental data

      FULL TEXT:

Pdf (English)









      REFERENCES

1. Timoshenko V. I. Turbulent mixing and combustion of supersonic air-hydrogen jet in a cocurrent limited subsonic flow (in Russian) / V. I.Timoshenko, I. S. Belotserkovets // Transactions on Aerodynamics. Problems and Prospects. – Kharkov; National Aerospace University “Kharkovsky Aviatsionnyi Institut”. P. 158 – 175.

2. Loytsyansky L. G. Fluid Mechanics (in Russian) / L. G. Loytsyansky. – Moscow: Nauka. – 1987. – 840 p.

3. Gulyaev A. N. On the creation of an all-purpose one-parameter model of turbulent viscosity (in Russian) / A. N. Gulyaev, V. Ye. Kozlov, A. N. Sekundov // MZhG. – 1993. – No 4. – P. 69 – 81.

4. Kovenya V. M. Method of Decomposition for Gas Dynamics Problems (in Russian) / V. M. Kovenya, N. N. Yanenko. – Novosibirsk: Nauka, 1981. – 304 p.

5. Gear C. W. Numerical Initial Value Problems in Ordinary Differential Equations / C. W. Gear. – New Jersey: Prentice-Hall, Inc. Englewood Cliffs, 1971.

6. Timoshenko V. I. March calculations of flow in interactions between a supersonic turbulent jet and concurrent limited subsonic flow/ (in Russian) / V. I. Timoshenko, I. S. Belotserkovets // Transactions of Dniepropetrovsk University. – 2008. – Vol. 1. Is. 1. – P. 15 – 23.

7. Rodionov A. V. A New march method for calculating exhaust jets (in Russian) / A. V. Rodionov // Zhurnal Vychislitelnoy Matematiki i Matematicheskoy Fiziki. – 2002. – Vol. 42, No 9. – P. 1413 – 1424.

8. Ivens J. S. Effects of chemical kinetics and incomplete mixing on hydrogen combustion in supersonic flow (in Russian) / J. S. Ivens, C. J. Sheksnider-jn // Raketnaya Tekhnika i Kosmonavtika. – 1980. – Vol. 18, No 4. – P. 77 – 84.

9. Baev V. K. Combustion in Supersonic Flow (in Russian) / V. K. Baev, V. I. Golovichev, P. K. Tretyakov. – Novosibirsk: Nauka, 1986. – 301 p.

10. Dautov N. G. On the selection of a kinetic scheme for describing detonation in the mixture of hydrogen + air behind impact waves (in Russian) / N. G. Dautov, A. M. Starik // Teplofizika Vysokikh Temperatur. – 1993. – Vol. 31, No 2. – P. 292 – 301.

11. Golovichev V. I. Numerical analysis of kinetic models of hydrogen ignition (in Russian) / V. I. Golovichev, V. I. Dimitrov, R. I. Soloukhin // Fizika Gorenia i Vzryva. – 1973. – No 1. – P. 95 – 101.

12. Galitseysky K. B. Simulation of residual burning high-speed turbulent jets (in Russian) / K. B. Galitseysky // Fizika Gorenia i Vzryva. – 2006. – Vol. 42, No 2. – P. 3 – 9.

13. Zimont V. L. Hydrogen combustion in supersonic flow through channel in the presence of pseudoshock (in Russian) / V. L. Zimont, V. M. Levin, Ye. A Meshcheryakov // Fizika Gorenia i Vzryva. – 1978. – Vol. 14, No. 4 – P. 23 – 36.





Copyright (©) 2014 Deshko A. Ye.

Copyright © 2014-2018 Technical mechanics


____________________________________________________________________________________________________________________________
GUIDE
FOR AUTHORS
Guide for Authors