Antenna systems based on antenna arrays: the current trends of use and lines of development

Автор(и)

  • I. V. Hrymaliuk Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, 15 Leshko-Popel St., Dnipro 49005, Ukraine; e-mail: Irysjka@email.ua

Ключові слова:

antenna array, directional diagram, phase of signal, beam steering methods.

Анотація

Antenna arrays are systems that consist of a large number of antenna elements to shape, steer, and direct the beam without any physical motion of the antenna. Their basic concept is to use a group of separate antennas, each element of which can change the phase or amplitude of the radiated signal. This makes it possible to direct radiation and control the angle of the main lobe of the antenna system's radiation pattern. The use of antenna arrays is widespread in many areas, such as military radars, satellite communications, security systems, the Internet of Things (IoT), and mobile communications.

The goal of this work is to analyze the possibilities of using antenna systems based on antenna arrays and estimate the current trends and lines of their development.

The article considers various types and methods of antenna array control, compares their efficiency and suitability for use in various areas, including unmanned aerial vehicle (UAV) systems. Attention is paid to the types of antenna arrays, such as linear and planar phased arrays, and to scanning methods - from digital methods to analog approaches. The article also compares phase and amplitude control methods, which include mechanical, digital, and adaptive control of antenna arrays. These methods offer high-accuracy scanning without any physical motion of the antenna. The effect of these methods on the power consumption, signal speed, and control accuracy is taken into account. The novelty and contribution of this article lie in an in-depth comparison of different types of antenna arrays and methods to control them with emphasis on their application in a dynamic environment typical of UAVs. New solutions are proposed for optimizing antenna array designs, which may be used in future unmanned aerial vehicle systems to improve the communication quality, increase the positioning accuracy, and reduce the response time in rapidly changing circumstances.

REFERENCES

1. Sarath J. V., Bindu (Palakkal) P., Biju K. S., Rani L. Review of antennas used in FPV/WLAN applications. Acta Technica Corviniensis - Bulletin of Engineering. 2021. T. XIV. F. 1. Pp. 29 - 40.

2. Meng S., Su X., Wen Z. , Dai X. , Zhou Y. , Yang W. Robust drones formation control in 5G-wireless sensor network using mm-wave. Hindawi Wireless Communications and Mobile Computing. May 2018. 7 pp. 
https://doi.org/10.1155/2018/5253840

3. Oliveira M. T., Miranda R. K., Costa J. P. C. L., Almeida A. L. F., Sousa R. T. Jr. Low-cost antenna array based drone tracking device for outdoor environments. Hindawi wireless communications and mobile computing. 2019.14 pp. 
https://doi.org/10.1155/2019/5437908

4. Moschetti P. Increasing drone video down link reliability using phased array technology. Colorado School of Mines. Thesis. Golden, Colorado. 2020. 86 pp.

5. Kumar A. Drone-based antenna array for service time minimization in wireless networks. JETIR. 2019. V. 6. Iss. 4. Pp. 629 - 637.

6. Xiao Z., Han Z., Arumugam N., Dobre O. A., Clerckx B., Choi J., He C. and Tong W. Antenna array enabled space/air/ground communications and networking for 6G. IEEE Journal on Selected Areas in Communications. 2022. V. 40. Iss. 10. Pp. 2773 - 2804. https://doi.org/10.1109/JSAC.2022.3196320

7. Lebed Y., Lazuta R., Koval A. Analysis the effectiveness use adaptive antenna arrays in radio communication systems in conditions active electronic warfare. Collection of Scientific Papers of the Military Institute of Telecommunications and Informatization. 2020. No. 1. Pp. 46 - 57. (In Ukrainian).

8. Morcelles K., Malatest B. Сomparing SDRS for aerospace and defense electronics. Microwave Journal, e - book. April 2024. Pp. 4 - 9. URL: https://www.microwavejournal.com/articles/41210 - comparing - sdrs - for - aerospace - and - defense - electronics (Last accessed on February 17, 2025).

9. Tran H. H., Nguyen T., Ta H. N., Pham D. Ph.. Metasurface-based MIMO antenna with compact, wideband, and high isolation characteristics for sub - 6 GHz, 5G applications. IEEE Transactions and Journals. 2023. V. 11. Pp. 1 - 8. URL: https://ieeexplore.ieee.org/document/10172201 (Last accessed on January 12, 2025).
https://doi.org/10.1109/ACCESS.2023.3292303

10. Ioannis P. Theoharis advanced antenna system for 5G-enabled cubesats. University of Wollongong. Thesis. August 2023. 195 pp.

11. Ullah R., Ullah S., Kamal B., Faisal F., Ullah R., Choi D., Ahmad A. High-gain vivaldi antenna with wide bandwidth characteristics for 5G mobile and Ku-band radar applications. Electronics. 2021. 14 pp. URL: https://www.mdpi.com/2079-9292/10/6/667 (Last accessed on February 12, 2025).
https://doi.org/10.3390/electronics10060667

12. Naqvi S. I., Hussain N. Antennas for 5G and 6G communications. Chapter in book: 5G and 6G Enhanced Broadband Communications. July 2022. 24p. URL: https://www.researchgate.net/publication/361960173_Antennas_for_5G_and_6G_Communications (Last accessed on December 23, 2024).

13. Wang Z., Dong Y. Compact MIMO-antenna using stepped impedance resonator-based metasurface for 5G and Wi - Fi applications. Microw. Opt. Technol. Lett. 2021. V. 63. No. 1. Pp. 211 - 216.
https://doi.org/10.1002/mop.32560

14. Khan M. S. , Shafique M. F., Capobianco A.-D., Autizi E., Shoaib I. Compact UWB - MIMO antenna array with a novel decoupling structure. 10-th International Bhurban Conference on Applied Sciences and Technology. Islamabad, Pakistan. 15 - 19 January 2013. Pp. 347 - 350.
https://doi.org/10.1109/IBCAST.2013.6512176

15. Desai A., Bui C. D., Patel J., Upadhyaya T., Byun G., Nguyen T. K. Compact wideband four-element optically transparent MIMO antenna for mm - wave 5G applications. IEEE Access. 2020. V. 8. Pp. 194206 - 194217.
https://doi.org/10.1109/ACCESS.2020.3033314

16. Kishore N., Senapati A. 5G smart antenna for IoT application: A review. International Journal of Communication Systems.V. 35. Iss. 13. 16 pp. 
https://doi.org/10.1002/dac.5241

17. Raad H. An UWB antenna array for flexible IoT wireless systems. Progress in Electromagnetics Research. 2018. V. 162. Pp. 109 - 121.
https://doi.org/10.2528/PIER18060804

18. Tubbal F., Matekovits L., Raad R. Antenna designs for 5G/IoT and space applications. Electronics. 2022. V.11. 2484.
https://doi.org/10.3390/electronics11162484

19. Arnaoutoglou D. G., Empliouk T. M., Kaifas T. N. F., Chryssomallis M. T., Kyriacou G. A review of multifunctional antenna designs for internet of things. Electronics. 2024. V. 13. 3200. https://doi.org/10.3390/electronics13163200

20. Maral G., Bousquet M., Sun Z. Satellite Communications Systems. 6-th edition. 2020. Pp. 325 - 569.
https://doi.org/10.1002/9781119673811

21. Natera M. A. S. New antenna array architectures for satellite communications. Chapter in book: Advances in Satellite Communications. 2011. Pp. 168 - 194.

22. Rogstad D. H., Mileant A., Pham T. T. Antenna arraying techniques in the deep space network. Monograph 5: Deep Space Communications and Navigation Series. January 2003. 163 pp. https://doi.org/10.1002/047172131X

23. Josefsson L., Rengarajan S. R. Slotted waveguide array antennas. Theory, analysis and design. The Institution of Engineering and Technology. 2018. 351pp.
https://doi.org/10.1049/SBEW517E

24. Voskresensky D. I., Gostyukhin V. L., Maksimov V. M., Ponomarev L. I. Microwave Devices and Antennas. Moscow: Radio i Svyaz', 1994. 376 pp. (In Russian).

25. Monzingo R. A., Miller T. W. Introduction to Adaptive Arrays. Raleigh: SciTech Publishing, Inc., 2004. 552 pp.

26. Manu O., Dimian M., Graur A. Analysis of beamforming in phased antenna arrays. 10-th International Conference on Development and Application Systems. Suceava, Romania. May 27 - 29, 2010. Pp. 294 - 298.

27. Hopkins G. D., Ratner J., Traille A., Tripp V. Aperture efficiency of amplitude weighting distributions for array antennas. Conference paper in IEEE Aerospace Conference Proceedings. April 2007. 9 pp. URL: https://www.researchgate.net/publication/224698919_Aperture_Efficiency_of_Amplitude_Weighting_Distributions_for_Array_Antennas (Last accessed on March 2, 2025).
https://doi.org/10.1109/AERO.2007.352856

28. Gostyukhin V. L., Trusov V. N., Gostyukhin A. V. Active Phased Arrays. Moscow: Radiotekhnika, 2011. 304 pp. (in Russian).

29. Sun X., Blázquez - García R., García - Tejero A., Fernández - González J. M., Burgos - García M., Sierra - Castañer M. Circular array antenna for UAV-UAV сommunications. 11-th European Conference on Antennas and Propagation (EUCAP). March 2017. 4 pp.
https://doi.org/10.23919/EuCAP.2017.7928819

30. Wnuk M. Application of the Vivaldi antenna in a linear antenna array for radar systems. Scientific Journal of Gdynia Maritime University. 2024. No. 132. Pp. 35 - 56.
https://doi.org/10.26408/132.03

31. Hanna S., Yan H., Cabric D. Distributed UAV placement optimization for cooperative line - of - sight MIMO communications. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 12 - 17 May 2019. 5 pp. https://doi.org/10.1109/ICASSP.2019.8683875

32. Duan Z., Yang X., Xu Q., Wang L. Time - division multi array beamforming for UAV communication.Wireless Communications and Mobile Computing. April 2022. 13 pp. 
https://doi.org/10.1155/2022/4089931

33. Fomin P., Dumin O., Plakhtii V., Nesterenko M. Ultrawideband antenna arrays on Сlavin radiators. Visnyk of V.N. Karazin Kharkiv National University. Radiophysics and Electronics. 2023. Iss. 38. Pp. 65 - 73. (In Ukrainian).

 

 

 

Опубліковано

2025-04-07

Як цитувати

Hrymaliuk, I. V. (2025). Antenna systems based on antenna arrays: the current trends of use and lines of development. ТЕХНІЧНА МЕХАНІКА, (1), 112-. вилучено із https://journal-itm.dp.ua/ojs/index.php/ITM_j1/article/view/99

Номер

Розділ

Фізика та астрономія