
Home
>
Journal Issues
>
¹ 2 (2016) Technical mechanics
>
3
___________________________________________________
UDC 629.784:621.64:532.542
Technical mechanics, 2016, 2, 1631
CONSIDERING DISSIPATIVE FORCES FOR MATHEMATICAL MODELING
LONGITUDINAL VIBRATIONS OF LIQUID LAUNCH VEHICLE BODY
A. D. Nikolaev, N. V. Khoryak, V. A. Serenko, D. V. Klimenko, V. F. Khodorenko, I. D. Bashliy
The effects of fluid filling the propellant tanks on the characteristics of the dominant harmonics of the lon gitudinal vibrations of the launch vehicle body with a tandem configuration of stages are analyzed using the updated
model of the longitudinal vibrations of a multistage liquid launch vehicle (LV). This model describes the
longitudinal vibrations of the LV body as the mechanical vibrations of the multicoupled dissipative system of the
LV design and the liquid propellant in tanks. It is shown that the parameters of the natural longitudinal oscillation
of a liquid propellant in the LV tanks strongly affect the frequencies and decrements of deeper tones of the natural
longitudinal oscillation of the LV body playing a crucial role in the mechanism of losses in the longitudinal stability
of liquid rockets.
In the context of a model of a viscous friction for mathematical describing a vibratory motion of the flexible
body of the liquid launch liquid the experimental values of the damping coefficients for vibrations of the LV load carrying structures and structurally similar models of liquid rockets are analyzed and generalized based on the
available openliterature information. In particular, the results of the analysis of the dynamic tests of liquid rockets
and their structurally similar models are given: a physical 1:6.5 scale model of the Zenit LV, the 15A15 rocket
and its physical 1:3.7 scale model, a physical 1:5 scale model of the prototype of the Dnepr LV and its lowermost
stages. An analysis of experimental data resulted in the development of methodic recommendations for calculating
dissipation of energy of vibrations of the LV structures and damping vibrations of the liquid fuel in their tanks
in building the finiteelement models of the longitudinal vibrations of the liquid LV body, including conditions of
the resonance growth of amplitudes of the LV body vibrations.
liquid launch vehicle, longitudinal vibrations, dissipation of energy,
structural damping, viscous friction, parameters of natural oscillation.
1. Natanzon M. S. Longitudinal SelfOscillation of Liquid Rocket (in Russian) / M. S. Natanzon.  Moscow : Mashinostroyenie, 1977.  208 p.
2. Oppenheim B. W. Advanced Pogo Stability Analysis for Liquid Rockets / B. W. Oppenheim, S. Rubin // Journal
of Spacecraft and Rockets.  1993.  Vol. 30, No 3.  P. 360  383.
3. Pilipenko V. V. Providing the LPRERocket Structure Dynamic Compatibility / V. V. Pilipenko // AIAA / SAE
/ ASME / ASEE 29th Joint Propulsion Conference and Exhibit (June 28  30, 1993).  Monterey, CA. 
1993.  AIAA 93  2422.
4. Kolesnikov K. S. Dynamics of Rockets (in Russian) / K. S. Kolesnikov.  Moscow : Mashinostroyenie, 1980. 
376 p.
5. Gladkiy V. F. Dynamics of Flying Vehicle Design (in Russian) / V. F. Gladkiy.  Moscow : Nauka, 1969. 
496 p.
6. Fenwick J. POGO // Threshold. Rocketdyne's engineering journal of power technology / J. Fenwick.  1992.  Spring.  P. 21  22.
7. Theoretical determination of amplitudes of longitudinal vibrations of liquid launch vehicles (in Russian) /
V. V. Pylypenko, N. I. Dovgotko, S. I. Dolgopolov, A. D. Nikolaev, V. A. Serenko, N. V. Khoryak // Kosmichna
Nauka i Tekhnologia.  1999.  Vol. 5, No 1.  P. 90  96.
8. Theoretical determination of dynamic loads (longitudinal vibration accelerations) on design of RS20 liquid
launch vehicle at active leg of its flight (in Russian) / V. V. Pylypenko, N. I. Dovgotko, A. D. Nikolaev,
S. I. Dolgopolov, N. V. Khoryak, V. A. Serenko // Tekhnicheskaya Mekhanika.  2000.  No 1.  P. 3  18.
9. Pylypenko V. V. Cavitation SelfOscillation (in Russian) / V. V. Pylypenko.  Kiev : Naukova Dumka, 1989. 
316 p.
10. Panovko Ya. G. Internal Friction for Oscillation in Elastic Systems (in Russian) / Ya. G. Panovko.  Moscow : Fizmatgiz, 1960.  193 p.
11. Mikishev G. N. Experimental Methods for Dynamics of Spacecraft (in Russian) / G. N. Mikishev.  Moscow : Mashinostroyenie, 1978.  248 p.
12. Rabinovich B. I. Introduction to Dynamics of Space Launch Vehicles (in Russian) / B. I. Rabinovich.  Sec ond Edition Revised.  Moscow : Mashinostroyenie, 1983.  296 p.
13. Hilbrandt E. Damping representation related to Spacecraft Structural Design / E. Hilbrandt // Accuracy,
Reliab. and Train. FEM Technol. Proc. 4th World Congress, Interlaken, September 1721, 1984.  P. 21  31.
14. Vibrations in Engineering: Handbook in 6 volumes. Vol. 2. Vibrations of Nonlinear Mechanical Systems (in
Russian) / Edited by I. I. Blekhman.  Moscow : Mashinostroyenie, 1979.  351 p.
15. Khoryak N. V. Mathematical modeling interactions between longitudinal oscillation of liquid rocket body as
multiple coupling elasticdissipative system and dynamic processes in propulsion system (in Russian) /
N. V. Khoryak. A. D. Nikolaev // Tekhnicheskaya Mekhanika.  2010.  No 3.  P. 27  37.
17
16. Khoryak N. V. Dissipative effects of energy for fuel sloshing and structural damping liquid launch vehicle on
its longitudinal stability (in Russian) / N. V. Khoryak // Tekhnicheskaya Mekhanika.  2013.  No 3.  P. 21 
33.
17. Nikolaev A. D. Determination of parameters of natural longitudinal oscillation of body structure of liquid
launch vehicles considering dissipation of energy (in Russian) / A. D. Nikolaev, N. V. Khoryak // Aviatsionno Kosmicheskaya Tekhnika i Tekhnoligia.  2004.  Issue 4/12.  P. 62  73.
18. Dynamics of Starting Liquid Space Launch Vehicles (in Russian) / G. I. Bogomaz, N. Ye. Naumenko,
M. B. Sobolevskaya, I. Yu. Khizha.  Kiev : Naukova Dumka, 2005.  248 p.
19. Strength of Materials and Structures (in Russian) / Edited by V. T. Yaroshenko.  Kiev : Akademperiodika,
2005.  1088 p.
20. Vibration Testing of a 1/5 Scale Model of HII Launch Vehicle / M. Minegishi , M. Sano, K. Komatsu,
T. Morita, Y. Morino, K. Tomioka, I. Ujino // Report of National Aerospace Laboratory.  TR1061.  1990.  154 c.
21. Pustylnik Ye. I. Statistical Methods of Analysis and Processing Observation Data (in Russian) /
Ye. I. Pustylnik.  Moscow : Nauka, Head Office of Physical and Mathematical Literature.  1968.  288 p.
22. Kohnke P. Ansys Inc. Theory Manual. 001369. Twelfth Edition / P. Kohnke.  Canonsburg : SAS IP, 2001. 
1266 p.
23. Lee K. Fundamentals of CAD/CAM/CAE (in Russian) / K. Lee.  St.Petersburg : Piter, 2004.  560 p.
24. Bashliy I. D. Mathematical modeling 3D oscillation of shell liquidfilling structures using todayÕs tools for
computer designing and analysis (in Russian) / I. D. Bashliy, A. D. Nikolaev // Tekhnicheskaya Mekhanika. 
2013.  No 2.  P. 18  25.
Copyright (©) 2016 A. D. Nikolaev, N. V. Khoryak, V. A. Serenko, D. V. Klimenko, V. F. Khodorenko, I. D. Bashliy
Copyright © 20142018 Technical mechanics
____________________________________________________________________________________________________________________________

GUIDE FOR AUTHORS
