TECHNICAL MECHANICS
ISSN (Print): 1561-9184, ISSN (Online): 2616-6380

English
Russian
Ukrainian
Home > Journal Issues > ¹ 4 (2014) Technical mechanics > 10
___________________________________________________

UDC 533.9

Technical mechanics, 2014, 4, 102- 117

NUMERICAL SIMULATION OF DIELECTRIC BARRIER DISCHARGE IN AIR

Redchits D. A.

      ABSTRACT

      The aim of this work is to develop a new numerical-analytical model for the qualitative and quantitative simulation of dielectric barrier discharge processes in operation of the plasma actuator. This model includes a description of nonstationary electrodynamic processes, kinetic phenomena and plasma chemical reactions. A uniform implicit numerical algorithm for an efficient solution of the inhomogeneous system of the initial equa-tions was realized. The main feature of the developed numerical-analytical model is the use of a rational number of equations for the description of all the main nonstationary parameters of the dielectric barrier discharge in air. The generation and development of the streamer for a real configuration of the plasma actuators were obtained on the basis of this model. The developed model of the dielectric barrier discharge is designed for an adequate simu-lation of the Lorentz force acting on the turbulent flow of partially ionized air in a wide range of amplitudes and frequencies of the applied voltage as well as parameters and properties of the dielectric surface. Pdf (English)







      KEYWORDS

plasma dynamics, plasma actuator, dielectric barrier discharge, chemical kinetics, numerical simulation, streamer

      FULL TEXT:

Pdf (English)









      REFERENCES

1. 1. Application of weakly ionized plasmas as wing flow control devices / T. Corke, E. Jumper, M. Post, D. Orlov // AIAA Paper. – 2002. – No 350. – P. 9.

2. Plasma structure in the aerodynamic plasma actuator / C. Enloe, T. McLaughlin, R. VanDyken, J. Fischer // AIAA Paper. – 2004. – No 844. – P. 8.

3. Scaling laws for oxygen discharge plasmas / E. A. Bogdanov, V. I. Kolobov, A. A. Kudryavtsev, L. D. Tsendin // Technical Physics. – 2002. – Vol. 47, No 8. – P. 946 – 954.

4. Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity – application to airflow control / M. Forte, J. Jolibois, E. Moreau, G. Touchard // AIAA Paper. – 2006. – No 2863. – P. 9.

5. Kossyi A. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures / A. Kossyi, A. Kostinsky, A. Matveyev // Plasma Sources Science and Technology. – 1992. – Vol. 1, No 3. – P. 207 – 220.

6. BOLSIG+: Electron Boltzmann equation solver [Electronic Resource] / Laboratoire Plasma et Conversion d'Energie (LAPLACE), Universite Paul Sabatier. – Toulouse : France, 2013.WWW.URL:http://www.bolsig.laplace.univ-ulse.fr/copyright.php. – 10.02.2013.

7. Landau L. D. The Theory of Field (in Russian) / L. D. Landau, Ye. M. Lifshits. – Moscow : Nauka, 1988. – 512 p.

8. Surface potential and electric field structure in the aerodynamic plasma actuator / C. Enloe, T. McLaughlin, J. Gregory, R. Medina, W. Miller // AIAA Paper. – 2008. – No 1103. – P. 11.

9. Effects of oxygen content on the behavior of the dielectric barrier discharge aerodynamic plasma actuator / G. Font, C. Enloe, J. Newcomb, A. Teague, A. Vasso // AIAA Paper. – 2010. – No 545. – P. 16.

10. Abe T. Momentum coupling and flow induction in a DBD plasma actuator / T. Abe, M. Takagaki // AIAA Paper. – 2009. – No 1622. – 8 p.

11.Rate of plasma thermalization of pulsed nanosecond surface dielectric barrier discharge / M. Nudnova, S. Kindusheva, N. Aleksahdrov, A. Starikovskiy // AIAA Paper. – 2010. – No 465. – P. 15.





Copyright (©) 2014 Redchits D. A.

Copyright © 2014-2018 Technical mechanics


____________________________________________________________________________________________________________________________
GUIDE
FOR AUTHORS
Guide for Authors