|
Home
>
Journal Issues
>
¹ 1 (2016) Technical mechanics
>
2
___________________________________________________
UDC 629.5
Technical mechanics, 2016, 1, 11 - 25
SYNTHESIS OF OBSERVER OF EXTENDED STATE VECTOR CONSIDERING
REQUIREMENTS FOR CLOSED LOOP OF CONTROL GIVEN IN FREQUENCY
DOMAIN
S. V. Khoroshilov
'
To consider a closed loop of a combined control system, a procedure for the synthesis of an extended state
observer is proposed. Requirements for the specified quality and the stability of the closed loop of the control
system are formulated in the frequency domain with regard to the spectral properties of disturbances and the sen- sor noise. The problem of the observer synthesis is solved by the Í? optimization methodology using linear matrix
inequalities.
observer, expended state vector, combined regulator, sensitivity
function, weighting function.
1. Radke A. Survey of State and Disturbance Observers for Practitioners / A. Radke, Zh. Gao // Proceeding of
the American Control Conference. – 2006. – P. 5183 – 5188.
2. Luenberger D. Observers for Multivariable Systems / D. Luenberger // IEEE Transactions on Automatic
Control. – 1966. – Vol. 11, No. 2. – P. 190 – 197.
3. Sorenson H.W. Kalman Filtering : Theory and Application / H. W. Sorenson. – IEEE Press, 1985. – 457 p.
4. Shaked U. Í?-Optimal Estimation: A Tutorial. / U. Shaked, Theodor Y. // Proceedings of the IEEE Confer- ence on Decision Control, Tucson, AZ. – 1992. – P. 2278 – 2286.
5. De Souza C. E. Robust Í?-Filtering for Continuous Time Varying Uncertain Systems with Deterministic
Input Signals / C. E. De Souza, U. Shaked, M. Fu // IEEE Transactions on Signal Processing. – 1995. – No. 43. – 709 – 719.
6. Kuntsevich V. M. Control under Conditions of Indeterminate Form: Guarantee Results for Problems of Control
and Identification (in Russian) / V. M. Kuntsevich. – Kiev : Naukova Dumka, 2006. – 264 p.
7. Bakan G. M. Estimating the state of continuous dynamic systems using the method of ellipsoids (in Russian) /
G. M. Bakan, V. V. Volosov, N. N. Kussul // Kibernetika i Sistemnyi Analiz. – 1996. – No 6. – P. 72 – 91.
8. Jonhson S. Theory of regulators adapting to disturbances (in Russian) / S. Jonhson // Filtering and Stochastic
Control for Dynamic Systems. – Moscow, 1980. – P. 253 – 320.
9. Pavlovskyi M. A. Systems of Control of Spacecraft Rotary Motion. Textbook (in Ukrainian) / M. A. Pavlovskyi,
V. P. Gorbulyn, O. M. Klymenko. – Kyiv : Naukova Dumka, 1997. – 199 p.
10. Yang X. Capabilities of Extended State Observer for Estimating Uncertainties / X. Yang, Y. Huang // Proceeding
of the American Control Conference. – 2009. – P. 3700 – 3705.
11. Gao Z. Active Disturbance Rejection Control: a Paradigm Shift in Feedback Control System Design / Z. Gao
// Proceeding of the American Control Conference. – 2006 – P. 239 – 2405.
12. Alexander B. X. S. A Novel Application of Extended State Observer for High Performance Control of
NASA’s HSS Flywheel and Fault Detection / B. X. S. Alexander, R. Rarick, L. Dong // Proceeding of the
American Control Conference. – 2008. – P. 5216 – 5221.
13. Chen Z. Active Disturbance Rejection Control of Chemical Processes / Z. Chen, Q. Zheng, Z. Gao // 16th
IEEE International Conference on Control Application. – 2007. – P. 855 – 861.
14. Khoroshilov S. V. Synthesis of suboptimal compensators of disturbances in the form of the observer of extended
state vector (in Russian) / S. V. Khoroshilov // Tekhnicheskaya Mekhanika. -2014. – Is. 2. – P. 79 –
92.
15. Doyle J. C. Guaranteed Margins for LQG Regulators / J. C. Doyle // IEEE Transaction on Automatic Control. – 1978. – Vol. AC-23, No. 4. – P. 756 – 757.
16. Doyle J. C. Robustness with Observers / J. C. Doyle, G. Stein // IEEE Transaction on Automatic Control. –
1979. – Vol. AC-24, No. 4. – P. 607 – 611.
17. Stein G. The LQR/LTR Procedure for Multivariable Feedback Control Design / G. Stein, M. Athans // IEEE
Transaction on Automatic Control. – 1987. – Vol. AC-24, No. 4. – P. 607 – 611.
18. Schrijver E. Disturbance Observers for Rigid Mechanical Systems: Equivalence, Stability, and Design /
E. Schrijver, J. Van Dijk // ASME Journal of Dynamic Systems, Measurement, and Control. – 2002. – Vol. 124. – P. 539 – 548.
19. Francis B. A. A Course in Í? Control Theory. Lecture Notes in Control and Information Sciences /
B. A. Francis. – NY. : Springer-Verlag, 1987. – 150 p.
20. Verma M. Í?-Compensation with Mixed Sensitivity as a Broadband Matching Problem / M. Vermaand,
E. Jonckheere // Systems and Control Letters. – 1984. – No 4. – P. 125 – 130.
21. Zhou K. Robust and Optimal Control / K. Zhou, J.C. Doyle, K. Glover. – NY : Prentice-Hall, 1996. – 596 p.
22. Chilali M. Robust Pole Placement in LMI Regions / M. Chilali, P. Gahinet, P. Apkarian //IEEE Trans. on
Automatic Control. – 1999. – Vol. 44. – P. 2257 – 2270.
23. Chilali M. H? Design with Pole Placement Constraints: An LMI Approach / M. Chilali, P. Gahinet //IEEE
Trans. on Automatic Control. – Vol. 41. – 1996. – P. 358 – 367.
24. Nesterov Y. The Projective Method for Solving Linear Matrix Inequalities / Y. Nesterov, A. Nemirovskii //
Math. Programming Series B. – 1997. – Vol. 77. – P. 163 – 190.
25. Lorenzo P. Synthesis of control attitude systems for deformable satellites based on the Gilbert method (in
Russian) / P. Lorenzo, A. Santinelli // Control in Space. Proceedings of the International IFAK Symposium
on Automatic Control in Space. – 1975. – Vol. 1. – P. 190 – 198.
Copyright (©) 2016 S. V. Khoroshilov
Copyright © 2014-2018 Technical mechanics
____________________________________________________________________________________________________________________________
|
GUIDE FOR AUTHORS
|