|
Home
>
Journal Issues
>
No 1 (2020) Technical mechanics
>
2
___________________________________________________
UDC 629.78
Technical mechanics, 2020, 1, 19 - 30
ON DETERMINING THE DESIGN PARAMETERS OF AN ELECTRODYNAMIC SPACE TETHERED SYSTEM
DOI:
https://doi.org/10.15407/itm2020.01.019
Mischenko A. V., Pirozhenko A. V.
Mischenko A. V.
Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine
Pirozhenko A. V.
Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine
The aim of this work is to develop recommendations for choosing the design parameters of a passive
electrodynamic space tethered system (EDSTS). Based on models of EDSTS orbital and relative motion,
EDSTS motion is analyzed with account for EDSTS–environment interaction. It is shown that
the oscillations of an EDSTS about its equilibrium position decrease the tether tension force,
and when the oscillation amplitude is close to 60 degrees, the tether tension vanishes
(the tether sags). Since the charged-particle density, the Earth’s magnetic field, and a number
of other quantities vary at the orbital frequency, so does the Ampere force. This changes
the orbit eccentricity, namely, increases it. Preliminary estimates show that for orbits under
consideration these changes are insignificant, and near-circular (small-eccentricity) orbits
will remain so. The deorbit time of a spacecraft with an EDSTS without additional contactors
is analyzed as a function of the spacecraft mass, the tether parameters, and the initial orbit
parameters. It is shown that EDSTSs without additional contactors can be used to advantage
for nano- and microsatellite removal from low-Earth orbits. Increasing the EDSTS tether length
and radius significantly reduces the spacecraft deorbit time. For EDSTS-equipped spacecraft,
the deorbit time essentially depends on the orbit inclination. For near-polar orbits, the deorbit
time is longer by 3–6 times and by more than an order of magnitude in comparison with mid-latitude
and equatorial orbits, respectively. This is due to the smallness of the magnetic field
components perpendicular to the orbit plane in the case of polar orbits. The models developed
and the generalities established may be used at the initial design stage of small passive
electrodynamic space tethered systems.
space tethered system, spacecraft deorbit system, initial design stage, design parameters
1. Beletsky V. V., Levin E. M. Dynamics of Space Tethered Systems. Moscow: Nauka, 1990. 329 pp. (in Russian).
2. Strim B., Pasta M., Allais E. TSS-1 vs. TSS-1R. Fourth International Conference on Tether in Space, Washington, 10-14 April, 1995. Pp. 27-42.
3. Sanmartin J. R., Martinez-Sanchez M., Ahedo E. Bare wire anodes for electrodynamic tethers. Journal of Propulsion and Power. 1993. V. 9. No. 3. Pp. 353-360.
https://doi.org/10.2514/3.23629
4 Ahedo E., Sanmartin J. R. Analysis of bare-tether systems for deorbiting low-Earth-orbit satellites. Journal of Spacecraft and Rockets. 2002. V. 39. No. 2. Pp. 198-205.
https://doi.org/10.2514/2.3820
5 Khan S. B., Sanmartin J. R. Survival probability of round and tape tethers against debris impact. Journal of Spacecraft and Rockets. 2013. V. 50. No. 3. Pp. 603-608.
https://doi.org/10.2514/1.A32383
6. Mischenko A. V., Pirozhenko A. V., Shuvalov V. A. Interaction of an electrodynamic space tethered system with the ionospheric plasma. Vestnik Dnepropetrovskogo Natsionalnogo Universiteta: Raketno-Kosmicheskaya Tekhnika. 2007. No. 9/2. Pp. 190-196. (in Russian).
7. Pirozhenko A. V., Mischenko A. V. Small experimental electrodynamic space tether system. Electrical model. Space Sci.&Technol. 2018. No. 3. Pp. 3-9. (in Russian).
https://doi.org/10.15407/knit2018.03.003
8. Pirozhenko A. V., Maslova A. I., Mischenko A. V., Khramov D. A., Voloshenjuk O. L. Project of a small experimental electrodynamic space tether system. Space Sci.&Technol. 2018. No. 2, Pp. 3-11. (in Russian).
https://doi.org/10.15407/itm2017.02.012
8. Williams J. D., Sanmartin J. R., Rand L. P. Low work-function coating for an entirely propellantless bare electrodynamic tether. IEEE Transactions on Plasma Science. 2012. V. 40. No. 5. Pp. 1441-1445.
https://doi.org/10.1109/TPS.2012.2189589
9. Sanmartin J. R., Chen X., Sanchez-Arriaga G. Analysis of thermionic bare tether operation regimes in passive modes. 14th Spacecraft Charging Technology Conference, ESA/ESTEC, Noordwijk, 04-08 April 2016. Pp. 1-4.
10. Bronner B., Trung D. Developing the Miniature Tether Electrodynamics Experiment (MiTEE), http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3293&context=smallsat (accessed Feb. 5, 2020).
11. HTV-KITE Experiment, http://spaceflight101.com/htv-6/htv-kite-experiment/ (accessed Feb. 5, 2020).
12. Coffey S. , Kelm B. , Hoskin A., Carroll J., Levin E. TEPCE 1, 2. https://space.skyrocket.de/doc_sdat/tepce.htm (accessed Feb. 5, 2020).
13 Coffey S., Kelm B., Hoskin A., Carroll J., Levin E. Tethered elctrodynamic propulsion CubeSat experiment (TEPCE). Proceedings of Air Force Orbital Resources Ionosphere Conference, 2010. Pp. 12-14.
14. Johnson L., Fujii H. A., Sanmartin J. R. Electrodynamic Propulsion System Tether Experiment (T-REX), https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100024214.pdf (accessed Feb. 5, 2020).
15. Pirozhenko A. V. On constructing new forms of equations of perturbed keplerian motion. Kosm. Nauka Tehnol. 1999. V. 5. No. 2. Pp. 103-107. (in Russian).
https://doi.org/10.15407/knit1999.02.103
16. Alpatov A. P., Beletsky V. V., Dranovsky V. I., Zakrzhevskii A. E., Pirozhenko A. V., Troger G., Khoroshilov V. S. Dynamics of Space Systems with Tether and Hinge Joints. Izhevsk: Regular and Cha-otic Dynamics, 2007. 558 pp. (in Russian).
17. Beletsky V. V. Essays on the Motion of Celestial Bodies. Moscow: LKI, 2009. 432 pp. (in Rus-sian).
18. International Reference Ionosphere - IRI-2016 // SPDF Goddard Space Flight Center. URL: https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php
19. USSR Standard GOST 25645.126-85. Geomagnetic Field. Intraterrestrial Source Field Model. Introduced on January 1, 1987. Moscow: USSR State Committee on Product Quality Control and Stand-ards, 1989. 22 pp. (in Russian).
20. Finlay C. C., Maus S., Beggan C. D., Bondar T. N., Chambodut A. et al. (34 authors). Interna-tional Geomagnetic Reference Field: the eleventh generation. Geophysical Journal International. 2010. V. 183. No. 3. Pp. 1216-1230.
https://doi.org/10.1111/j.1365-246X.2010.04804.x
21. Maslova A. I., Pirozhenko A. V. Orbit changes under the small constant deceleration. Space Sci.&Technol. 2016. V. 22. No.6. Pp. 20-25. (in Russian).
https://doi.org/10.15407/knit2016.06.020
Copyright (©) 2020 Mischenko A. V., Pirozhenko A. V.
Copyright © 2014-2020 Technical mechanics
____________________________________________________________________________________________________________________________
|
GUIDE FOR AUTHORS
====================
Open Access Policy
====================
REGULATIONS
on the ethics of publications
====================
|