TECHNICAL MECHANICS
ISSN (Print): 1561-9184, ISSN (Online): 2616-6380

English
Russian
Ukrainian
Home > Journal Issues > No 1 (2020) Technical mechanics > 2
___________________________________________________

UDC 629.78

Technical mechanics, 2020, 1, 19 - 30

ON DETERMINING THE DESIGN PARAMETERS OF AN ELECTRODYNAMIC SPACE TETHERED SYSTEM

DOI: https://doi.org/10.15407/itm2020.01.019

Mischenko A. V., Pirozhenko A. V.

      ABOUT THE AUTHORS

Mischenko A. V.
Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine

Pirozhenko A. V.
Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine

      ABSTRACT

      The aim of this work is to develop recommendations for choosing the design parameters of a passive electrodynamic space tethered system (EDSTS). Based on models of EDSTS orbital and relative motion, EDSTS motion is analyzed with account for EDSTS–environment interaction. It is shown that the oscillations of an EDSTS about its equilibrium position decrease the tether tension force, and when the oscillation amplitude is close to 60 degrees, the tether tension vanishes (the tether sags). Since the charged-particle density, the Earth’s magnetic field, and a number of other quantities vary at the orbital frequency, so does the Ampere force. This changes the orbit eccentricity, namely, increases it. Preliminary estimates show that for orbits under consideration these changes are insignificant, and near-circular (small-eccentricity) orbits will remain so. The deorbit time of a spacecraft with an EDSTS without additional contactors is analyzed as a function of the spacecraft mass, the tether parameters, and the initial orbit parameters. It is shown that EDSTSs without additional contactors can be used to advantage for nano- and microsatellite removal from low-Earth orbits. Increasing the EDSTS tether length and radius significantly reduces the spacecraft deorbit time. For EDSTS-equipped spacecraft, the deorbit time essentially depends on the orbit inclination. For near-polar orbits, the deorbit time is longer by 3–6 times and by more than an order of magnitude in comparison with mid-latitude and equatorial orbits, respectively. This is due to the smallness of the magnetic field components perpendicular to the orbit plane in the case of polar orbits. The models developed and the generalities established may be used at the initial design stage of small passive electrodynamic space tethered systems.
      Pdf (English)







      KEYWORDS

space tethered system, spacecraft deorbit system, initial design stage, design parameters

      FULL TEXT:

Pdf (English)









      REFERENCES

1. Beletsky V. V., Levin E. M. Dynamics of Space Tethered Systems. Moscow: Nauka, 1990. 329 pp. (in Russian).

2. Strim B., Pasta M., Allais E. TSS-1 vs. TSS-1R. Fourth International Conference on Tether in Space, Washington, 10-14 April, 1995. Pp. 27-42.

3. Sanmartin J. R., Martinez-Sanchez M., Ahedo E. Bare wire anodes for electrodynamic tethers. Journal of Propulsion and Power. 1993. V. 9. No. 3. Pp. 353-360. https://doi.org/10.2514/3.23629

4 Ahedo E., Sanmartin J. R. Analysis of bare-tether systems for deorbiting low-Earth-orbit satellites. Journal of Spacecraft and Rockets. 2002. V. 39. No. 2. Pp. 198-205. https://doi.org/10.2514/2.3820

5 Khan S. B., Sanmartin J. R. Survival probability of round and tape tethers against debris impact. Journal of Spacecraft and Rockets. 2013. V. 50. No. 3. Pp. 603-608. https://doi.org/10.2514/1.A32383

6. Mischenko A. V., Pirozhenko A. V., Shuvalov V. A. Interaction of an electrodynamic space tethered system with the ionospheric plasma. Vestnik Dnepropetrovskogo Natsionalnogo Universiteta: Raketno-Kosmicheskaya Tekhnika. 2007. No. 9/2. Pp. 190-196. (in Russian).

7. Pirozhenko A. V., Mischenko A. V. Small experimental electrodynamic space tether system. Electrical model. Space Sci.&Technol. 2018. No. 3. Pp. 3-9. (in Russian). https://doi.org/10.15407/knit2018.03.003

8. Pirozhenko A. V., Maslova A. I., Mischenko A. V., Khramov D. A., Voloshenjuk O. L. Project of a small experimental electrodynamic space tether system. Space Sci.&Technol. 2018. No. 2, Pp. 3-11. (in Russian). https://doi.org/10.15407/itm2017.02.012

8. Williams J. D., Sanmartin J. R., Rand L. P. Low work-function coating for an entirely propellantless bare electrodynamic tether. IEEE Transactions on Plasma Science. 2012. V. 40. No. 5. Pp. 1441-1445. https://doi.org/10.1109/TPS.2012.2189589

9. Sanmartin J. R., Chen X., Sanchez-Arriaga G. Analysis of thermionic bare tether operation regimes in passive modes. 14th Spacecraft Charging Technology Conference, ESA/ESTEC, Noordwijk, 04-08 April 2016. Pp. 1-4.

10. Bronner B., Trung D. Developing the Miniature Tether Electrodynamics Experiment (MiTEE), http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3293&context=smallsat (accessed Feb. 5, 2020).

11. HTV-KITE Experiment, http://spaceflight101.com/htv-6/htv-kite-experiment/ (accessed Feb. 5, 2020).

12. Coffey S. , Kelm B. , Hoskin A., Carroll J., Levin E. TEPCE 1, 2. https://space.skyrocket.de/doc_sdat/tepce.htm (accessed Feb. 5, 2020).

13 Coffey S., Kelm B., Hoskin A., Carroll J., Levin E. Tethered elctrodynamic propulsion CubeSat experiment (TEPCE). Proceedings of Air Force Orbital Resources Ionosphere Conference, 2010. Pp. 12-14.

14. Johnson L., Fujii H. A., Sanmartin J. R. Electrodynamic Propulsion System Tether Experiment (T-REX), https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100024214.pdf (accessed Feb. 5, 2020).

15. Pirozhenko A. V. On constructing new forms of equations of perturbed keplerian motion. Kosm. Nauka Tehnol. 1999. V. 5. No. 2. Pp. 103-107. (in Russian). https://doi.org/10.15407/knit1999.02.103

16. Alpatov A. P., Beletsky V. V., Dranovsky V. I., Zakrzhevskii A. E., Pirozhenko A. V., Troger G., Khoroshilov V. S. Dynamics of Space Systems with Tether and Hinge Joints. Izhevsk: Regular and Cha-otic Dynamics, 2007. 558 pp. (in Russian).

17. Beletsky V. V. Essays on the Motion of Celestial Bodies. Moscow: LKI, 2009. 432 pp. (in Rus-sian).

18. International Reference Ionosphere - IRI-2016 // SPDF Goddard Space Flight Center. URL: https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php

19. USSR Standard GOST 25645.126-85. Geomagnetic Field. Intraterrestrial Source Field Model. Introduced on January 1, 1987. Moscow: USSR State Committee on Product Quality Control and Stand-ards, 1989. 22 pp. (in Russian).

20. Finlay C. C., Maus S., Beggan C. D., Bondar T. N., Chambodut A. et al. (34 authors). Interna-tional Geomagnetic Reference Field: the eleventh generation. Geophysical Journal International. 2010. V. 183. No. 3. Pp. 1216-1230. https://doi.org/10.1111/j.1365-246X.2010.04804.x

21. Maslova A. I., Pirozhenko A. V. Orbit changes under the small constant deceleration. Space Sci.&Technol. 2016. V. 22. No.6. Pp. 20-25. (in Russian). https://doi.org/10.15407/knit2016.06.020





Copyright (©) 2020 Mischenko A. V., Pirozhenko A. V.

Copyright © 2014-2020 Technical mechanics


____________________________________________________________________________________________________________________________
GUIDE
FOR AUTHORS
Guide for Authors ==================== Open Access Policy
Open Access Policy ==================== REGULATIONS
on the ethics of publications
REGULATIONS on the ethics of publications ====================