|
Home
>
Journal Issues
>
¹ 1 (2017) Technical mechanics
>
3
___________________________________________________
UDC 629.5
Technical mechanics, 2017, 1, 26 - 39
SYNTHESIS OF ROBUST CONTROLLER FOR ION BEAM SHEPHERD
CONTROL SYSTEM
DOI:
https://doi.org/10.15407/itm2017.01.026
S. V. Khoroshilov
S. V. Khoroshilov
Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine
Ukraine
The study objective is to synthesize a motion controller for an ion-beam shepherd with respect to space de- bris object during its contactless de-orbiting. It is assumed that the control system has sensors for measuring the
shepherd attitude with respect to space debris. Hydrazine thrusters with thrust pulse-width modulation have been
used as actuators of the control system. The robust controller was synthesized using the mixed sensitivity method.
It provides a necessary compromise between a robust stability, the control quality and expenses considering spe- cial impacts of an ion beam, external disturbances, errors in the determination of the relative position, and the
imperfection of the reactive actuators. Requirements for the synthesized controller are specified in the frequency
domain by using the selected weighting functions. The synthesis results are validated by the computer simulation
using the nonlinear mathematical model taking into account a wide range of orbital perturbations acting on the
system.
ion-beam shepherd, space debris object, robust controller, mixed
sensitivity method, weighting function, disturbances.
1. Bombardelli C., Pelaez J. Ion beam shepherd for contactless space debris removal. Journal of Guidance, Control, and Dynamics. 2011. V. 34. No. 3. Pp. 916-920.
https://doi.org/10.2514/1.51832
2. Hua T., Kubiak E., Lin Y., Kilby M. Control/structure interaction during space station freedom-orbiter berthing. The Fifth NASA/DOD Controls-Structures Interaction Technology Conference, Tahoe, Nevada, March 3-5, 1992. Pp. 181-203.
3. Mora E., Ankersen F., Serrano J. MIMO Control for 6DoF relative motion. Proceedings of 3'rd ESA International Conference on Spacecraft Guidance, Navigation and Control Systems, Noordwijk, The Netherlands, Nov. 26-29, 1996.
4. Ankersen F. Application of CAE Methods for the On-Board Flight Control System on the ARC Mission. ESA working paper. 1993. P. TN/FA-001 Iss. 1.0.
5. Doyle J. C., Stein G. Multivariable feedback design: Concepts for a classical. modern synthesis. IEEE Transactions on Automatic Control. 1981. No. 26(1). Pp. 4-16.
https://doi.org/10.1109/TAC.1981.1102555
6. Zhao K., Stoustrup J. Computation of the maximal robust H2 performance radius for uncertain discrete time systems with nonlinear parametric uncertainties. International Journal of Control. 1997. No. 67(1). Pp. 33-43.
https://doi.org/10.1080/002071797224342
7. Zhou K., Khargonekar P., Stoustrup J., Niemann H. Robust performance of systems with structured uncertainties in state space. Automatica. 1995. No. 31(2). Pp. 249-255.
https://doi.org/10.1016/0005-1098(94)00065-Q
8. Alpatov A., Cichocki F., Fokov A., Khoroshylov S., Merino M., Zakrzhevskii A. Determination of the force transmitted by an ion thruster plasma plume to an orbital object. Acta Astronautica. 2016. No. 119. Pp. 241-251.
https://doi.org/10.1016/j.actaastro.2015.11.020
9. Fokov A. A. Khoroshilov S. V. Validation of simplified method for computing the effect of plume of electric jet engine on orbital object. Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya. 2016. No. 2/129. Pp. 55-66. (in Russian).
10. Bombardelli C., Urrutxua H., Merino M., Ahedo E., Pelaez J. Relative dynamics and control of an ion beam shepherd satellite. Spaceflight Mechanics. 2012. V. 143. Pp. 2145-2158.
11. Wie B. Space Vehicle Dynamics and Control. Reston: American Institute of Aeronautics and Astro-nautics. 1998. 660 pp.
12. Ankersen F. Thruster Modulation Techniques: Application to Eureca Atti-tude and Orbit Control System. ESA working paper. 1989. Ð. EWP 1528.
13. Lawden D.F. Optimal Trajectories for Space Navigation. London: Butterworths, 1963. 126 pp.
14. Clohessy W., Wiltshire R Terminal guidance system for satellite rendez-vous. Journal of the Aerospace Sciences. 1960. V. 27. No. 9. Pp. 653-658.
https://doi.org/10.2514/8.8704
15. Zhou K., Doyle J. C., K. Glover Robust and Optimal Control. NY: Prentice-Hall, 1996. 596 pp.
16. Nesterov Y., Nemirovskii A. The projective method for solving linear matrix inequalities. Math. Programming Series B. 1997. V. 77. Pp. 163-190.
https://doi.org/10.1007/BF02614434
17. Khramov D. A. Visual modelling spacecraft motion. Teh. Meh. 2015. No. 2. Pp. 49-58. (in Russian).
DOI:
https://doi.org/10.15407/itm2017.01.026
Copyright (©) 2017 S. V. Khoroshilov
Copyright © 2014-2018 Technical mechanics
____________________________________________________________________________________________________________________________
|
GUIDE FOR AUTHORS
|