|
Home
>
Journal Issues
>
№ 4 (2018) Technical mechanics
>
3
___________________________________________________
UDC 629.78
Technical mechanics, 2018, 4, 30 - 45
NON-COOPERATIVE OBJECT PARAMETER DETERMINATIN IN ORBITAL SERVICE TASKS
DOI:
https://doi.org/10.15407/itm2018.04.030
Savchuk O. P., Fokov A. A.
Savchuk O. P.
Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine
Ukraine
Fokov A. A.
Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine
Ukraine
The solution of orbital service system motion problems calls for considering the features of service object
parameter measurement data processing. A service object is usually non-cooperative, if not with unknown characteristics.
The goal of this work is to systematize the results of research into the processing of measurement data on the parameters
of non-cooperative space objects. This paper analyzes available methods for orbital remote determination of space object
parameters and motion. The key components of the methods considered are set off: direct-measurement data preprocessing,
the choice of models of object center-of-mass and about-the-center-of-mass motion, and object parameter and motion estimation
based on the results of the preprocessing and the adopted dynamics models. Modern methods for orbital remote determination
of object parameters mainly use range imaging data. The output of the measurement data preprocessing (surrogate processing)
is, as a rule, the positions of the so-called geometric center of the object and the body frame axes. In choosing the service
object motion model, the orbital motion of the servicing spacecraft and the service object is for the most part neglected.
At the same time, there is a tendency to the consideration of orbital motion in further studies. Among the methods of orbital
service object parameter estimation, methods based on various modifications of the Kalman filter have seen the greatest use.
Other estimation methods are used too. At present, the concentration of the developers of the methods considered is placed
on improving the object parameter estimation accuracy and shortening the compu-tation time. The analysis of the methods
for orbital remote determination of service object characteristics presented in this paper may be used in simulating
the motion of a servicing spacecraft and a service object and in estimating the characteristics of the measurement data processing procedure.
orbital service, non-cooperative object, object parameters, motion parameters, remote determination
1. Alpatov A. P. Space debris: the aspects of the problem. Teh. Meh. 2018. No. 1. Pp. 30-47. (in Russian).
https://doi.org/10.15407/itm2018.01.030
2.Trushlyakov V. I., Yutkin E. A. Overview of the state of the art in the development of large-size space debris deorbit means as an in-orbit spacecraft servicing operation. Omskiy Nauchnyy Vestnik. 2015. No. 3 (143). Pp. 50-56. (in Russian).
3. Fehse W. Automated rendezvous and docking of spacecraft. Cambridge : University Press. 2003. P. 486.
https://doi.org/10.1017/CBO9780511543388
4. Kitamura S., Hayakawa Y., Kawamoto S. A reorbiter for GEO large space debris using ion beam irradiation. Proceedings of 32-nd International Electric Propulsion Conference. Wiesbaden, Germany, 2011. P. 13.
5. Lavagna M., Benvenuto R., De Luca L., Maggi F., Tadini P., Graziano M. Contactless active debris removal: the hybrid propulsion alternative. Proceedings of 5-th European Conference for Aerospace Sciences. Munich, 2013. P. 33.
6. Bombardelli C., Pelaez J. Ion beam shepherd for contactless space debris removal. Journal of Guidance, Control and Dynamics. 2011. V. 34. No. 3. Pp. 916-920.
https://doi.org/10.2514/1.51832
7. Clerc X., Retat I. Astrium vision on space debris removal. Proceedings of 63rd International Astronautical Congress. Naples, Italy, 2012. Pp. 1-5.
8. Martinez H.G., Giorgi G., Eissfeller B. Pose estimation and tracking of non-cooperative rocket bodies using Time-of-Flight cameras. Acta Astronautica. 2017. V. 139. Pp. 165-175.
https://doi.org/10.1016/j.actaastro.2017.07.002
9. Hillenbrand U., Lampariello R. Motion and parameter estimation of a free-floating space object from range data for motion prediction. Proc. of the 8th Int. Symposium on Artificial Intelligence, Robotics and Automation in Spaces. 2005. 26 pp.
10. Zhou B-Z., Cai G-P., Liu Y-M., Liu P. Motion prediction of a non-cooperative space target. Advances in Space Research. 2017. V. 61. No. 1. Pp. 207-222.
https://doi.org/10.1016/j.asr.2017.10.028
11. Sokolov N. L. Method for space debris orbit determination by onboard means. Trudy MAI. 2014. No. 77. URL: http://www.mai.ru/science/trudy/published.php?ID=52950 (last accessed Jul. 28, 2018). (in Russian).
12. Treshchalin A. P. Application of optoelectronic spacecraft instrumentation to near-earth object orbit pre-determination. Trudy MFTI. 2012. V. 4. No. 3. Pp. 122-131. (in Russian).
13. Range imaging // Wikipedia: the free encyclopedia. URL: https://en.wikipedia.org/wiki/Range_imaging (last accessed Apr. 21, 2018).
14. Range imaging. Wikipedia: the free encyclopedia URL: https://uk.wikipedia.org/wiki/Діапазонне_зображення (last accessed Apr. 21, 2018). (in Ukrainian).
15. Lichter M.D., Dubowsky S. Estimation of state, shape, and inertial parameters of space objects from sequences of range images. Intelligent Robots and Computer Vision XXI: Algorithms, Techniques, and Active Vision, Proceedings of SPIE - The International Society for Optical Engineering. 2003. V. 5267. Pp. 194-205.
https://doi.org/10.1117/12.514813
16. Lichter M.D. Shape, Motion, and Inertial Parameter Estimation of Space Objects using Teams of Cooperative Vision Sensors. PhD thesis, Massachusetts Institute of Technology, 2005. 160 pp.
https://doi.org/10.15607/RSS.2005.I.046
17. Benninghoff H., Boge T. Rendezvous involving a non-cooperative, tumbling target - estimation of moments of inertia and center of mass of an unknown target. Conference: International Symposium on Space Flight Dynamics. Munich. V. 25. 2015.
18. Pesce V., Lavagna M., Bevilacqua R. Stereovision-based pose and inertia estimation of unknown and uncooperative space objects. Advances in Space Research. 2017. V. 59. Pp. 236-251.
https://doi.org/10.1016/j.asr.2016.10.002
19. Doignon C. An Introduction to Model-Based Pose Estimation and 3-D Tracking Techniques. Scene Reconstruction, Pose Estimation and Tracking. Vienna. Austria. 2007. Pp. 359-382.
https://doi.org/10.5772/4943
20. Bercovici B., McMahon J. Point cloud processing using modified Rodrigues parameters for relative navigation. Journal of Guidance, Control, and Dynamics. 2017. V. 40. No. 12. Pp. 1-8.
https://doi.org/10.2514/1.51832
21. Lichter M.D., Dubowsky S. State, shape, and parameter estimation of space objects from range images. Proceedings of the 2004 IEEE. International Conference on Robotics & Automation. New Orleans, LA. 2004. Pp. 2974-2979.
https://doi.org/10.1109/ROBOT.2004.1307513
22. Fischler M.A., Bolles R.C. Random Sample Consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24. 1981. Pp. 381-395.
https://doi.org/10.1145/358669.358692
23. Besl P. J., McKay N. D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992. V. 14. No. 2. Pp. 239-256.
https://doi.org/10.1109/34.121791
24. Clohessy, W.H., Wiltshire, R.S. Terminal guidance system for satellite rendezvous. Journal of the Aerospace Sciences. 1960. V. 27. No. 9. Pp. 653-678.
https://doi.org/10.2514/8.8704
25. Gurfil P., Kholshevnikov K.V. Manifolds and metrics in the relative spacecraft motion problem. J. Guid. Control Dynamic. 2006. V. 29. Pp. 1004-1010.
https://doi.org/10.2514/1.15531
26. Segal S., Gurfil P. Effect of kinematic rotation-translation coupling on relative spacecraft translational dynamics. J. Guid Control Dynamic. 2009. V. 32. Pp. 1045-1050.
https://doi.org/10.2514/1.39320
27. Tweddle B.E., Saenz-Otero A., Leonard J.J., Miller D.W. Factor graph modeling of rigid-body dynamics for localization, mapping, and parameter estimation of a spinning object in space. Journal of Field Robotics. V. 32. No. 6. Pp. 897-'933.
https://doi.org/10.1002/rob.21548
28. Aghili F. A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics. IEEE Transactions on Robotics. 2012. V. 28. No. 3, Pp. 634-649.
https://doi.org/10.1109/TRO.2011.2179581
29. Brown R.G., Hwang P.Y.C. Introduction to Random Signals and Applied Kalman Filtering, 2nd Ed. New York: John Wiley & Sons, 1992. 512 pp.
30. Julier S.J., Uhlmann J.K. A new extension of the Kalman Filter to nonlinear systems. Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls, Orlando, Florida. 1997.
https://doi.org/10.1117/12.280797
31. Sidi M.J. Spacecraft Dynamics and Control: a Practical Engineering Approach. New York: Cambridge University Press, 1997.
https://doi.org/10.1017/CBO9780511815652
32. Nocedal W., Wright S.J. Numerical Optimization. Springer Series in Operations Research. New York: Springer, 1999.
https://doi.org/10.1007/b98874
33. Smith R.C., Cheeseman P. On the representation and estimation of spatial uncertainty. International Journal of Robotics Research. 1987. V. 5. No. 4. Pp. 56-68.
https://doi.org/10.1177/027836498600500404
34. Sujan V., Dubowsky S. Visually built task models for robot teams in unstructured environments. Proceedings of 2002 IEEE International Conference on Robotics and Automation (ICRA 2002). Washington DC, May 11-15, 2002.
DOI:
https://doi.org/10.15407/itm2018.04.030
Copyright (©) 2018 Savchuk O. P., Fokov A. A.
Copyright © 2014-2018 Technical mechanics
____________________________________________________________________________________________________________________________
|
GUIDE FOR AUTHORS
======================
Open Access Policy
======================
REGULATIONS
on the ethics of publications
======================
|