TECHNICAL MECHANICS
ISSN (Print): 1561-9184, ISSN (Online): 2616-6380

English
Russian
Ukrainian
Home > Journal Issues > ¹ 1 (2018) Technical mechanics > 4
___________________________________________________

UDC 629.7

Technical mechanics, 2018, 1, 30 - 47

SPACE DEBRIS: THE ASPECTS OF THE PROBLEM

DOI: https://doi.org/10.15407/itm2018.01.030

Alpatov A. P.

      ABOUT THE AUTHORS

Alpatov A. P.
Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine
Ukraine

      ABSTRACT

      The aim of this work is a system analysis of the engineering features of the deorbiting of space debris frag-ments. New results reflect a possibility to change the concept of near-Earth space debris mitigation from space debris elimination to space debris utilization. The paper presents a brief analysis of different aspects of the prob-lem of space debris mitigation in near-Earth space. Different methods and means to prevent the space debris for-mation and to reduce space debris population are considered. Scientific problems involving the development of methods and means for near-Earth space debris mitigation are formulated. Pdf (English)







      KEYWORDS

space debris, spacecraft protection, near-Earth space cleaning, tether systems, space debris deorbiting, active removal, cluster, utilization orbit

      FULL TEXT:

Pdf (English)









      REFERENCES

1. Technogenic Clogging of Near-Earth Space. A. P. Alpatov (Ed.). Dnipropetrovsk: Porogi, 2012. 378 pp. (in Russian).

2. Space Debris. In two books. Book 1. Space Debris Observation Methods and Models. G. G. Raikunov (Ed.). Moscow: FIZMATLIT, 2014. 245 pp. (in Russian).

3. Space Debris. In two books. Book 2. Space Debris Prevention. G. G. Raikunov (Ed.). Moscow: FIZMATLIT, 2014. 188 pp. (in Russian).

4. Technical report on space debris. United Nations. New York, 1999. 50 pp.

5. Alpatov A. P., Zakrzhevskiii A. E. Passive deployment of a pair of connected bodies in orbit. Prikladnaya Mekhanika. 1999. V. 35. No. 10. Pp. 87-92. (in Russian). https://doi.org/10.1007/BF02682318

6. Alpatov A. P., Gusynin V. P., Belonozhko P. P., Khoroshilov S. V., Fokov A. A. Shape control of large reflecting structures in space. 62nd International Astronautical Congress, Cape Town, SA. Copyright ©2011 by the International Astronautical Federation. All rights reserved. IAC-11.C2.3.6.

7. Bombardelli C., Herrera J., Iturri A., Pelaez J. Space debris removal with bare electrodynamic tethers. Proceedings of the 20th AAS: AIAA Spaceflight Mechanics Meeting, San Diego, CA, 2010.

8. Bombardelli C., Pelaez J. Ion beam shepherd for contactless space debris removal. Journal of Guidance, Control, and Dynamics. 2011. V. 34. No. 3. Pp. 916-920. https://doi.org/10.2514/1.51832

9. Estes R. D., Lorenzini E. C., Sanmartin J., Pelaez J., Martinez-Sanchez M., Johnson C. L., Vas I. E. Bare tethers for electrodynamic spacecraft propulsion. Journal of Spacecraft and Rockets. 2000. V. 37. Pp. 205-211. https://doi.org/10.2514/2.3567

10. Bombardelli C., Alpatov A. P., Pirozhenko A. V., Baranov E. Yu., Osinovyi G. G., Zakrzhevskii A. E. Project "space shepherd" with ion beam. Ideas and problems. Kosm. Nauka Tehnol, 2014. V. 20. No. 2. Pp. 55-60. (in Russian). https://doi.org/10.15407/knit2014.02.055

11. Alpatov A. P., Fokov A. A., Khoroshylov S. V. Determination of the optimum position of an ion beam shepherd with respect to a space debris object. Ukrainian Conference on Space Research. Abstracts (Odessa, Ukraine, August 25-28, 2015). Odessa, 2015. P. 126. (in Russian).

12. Alpatov À., Cichocki F., Fokov A., Khoroshylov S., Merino M. Algorithm for determination of force transmitted by plume of ion thruster to orbital object using photo camera. Proceeding of the 66th International Astronautical Congress (Jerusalem, Israel, 2015. IAC-15-A6.5.5-27732). Jerusalem, 2015.

13. Alpatov A., Cichocki F., Fokov A., Khoroshylov S., Merino M. Determination of the force transmitted by an ion thruster plasma plume to an orbital object. Acta Astronautica. 2016. No. 119. Pp. 241-251. https://doi.org/10.1016/j.actaastro.2015.11.020

14. Alpatov A. P., Paliy A. S., Skorik A. D. Aerodynamic systems for removing space objects. Teh. Meh. 2015. No. 4. Pp. 126-138. (in Russian).

15. Polyakhova E. N. Space Flight under Solar Sail: Problems and Prospects. Moscow: Nauka, 1986. 304 pp. (in Russian).

16. Alpatov A. P., Belonozhko P. P., Tarasov S. V., Fokov A. A., Khramov D. A. Space robotics prospects. Information Technologies in Metallurgy and Mechanical Engineering: conference proceedings (Dnipropetrovsk, March 25-27, 2014). Dnipropetrovsk, 2014. Pp. 5-6. (in Russian).

17. Sanjurjo Rivo M. Self Balanced Bare Electrodynamic Tethers. Space Debris Mitigation and other Applications : tesis doctoral N 1839 / Manuel Sanjurjo Rivo. Madrid, 2009. 215 pp.

18. Alpatov A. P., Beletsky V. V., Dranovskii V. I., Khoroshilov V. S., Pirozhenko A. V., Troger H., Zakrzhevskii A. E. Dynamics of Tethered Space Systems. Boca Raton, London, New York: CRC Press, 2010. 223 pp.

19. Levin E. M. Dynamic analysis of space tether missions. San Diego: American Astronautical Society, 2007. 453 p.

20. Fujii H. A. et al. Sounding rocket experiment of bare electrodynamic tether system. Acta Astronautica. 2009. V. 64, No. 2-3. Pp. 313-324. https://doi.org/10.1016/j.actaastro.2008.07.006

21. Alpatov A. P., Gorbulin V. P. Space platforms for orbital industrial complexes: problems and prospects. Visn, Nac, Akad. Nauk. Ukr. 2013. No. 12. Pp. 26-38. (in Russian). https://doi.org/10.15407/visn2013.12.026

22. Alpatov A. P., Goldstein Yu. M. Ballistic analysis of the orbit distribution of spacecraft for different functional missions. Teh. Meh. 2017. No. 2. Pp. 33-41. (in Russian). https://doi.org/10.15407/itm2017.02.033





DOI: https://doi.org/10.15407/itm2018.01.030

Copyright (©) 2018 Alpatov A. P.

Copyright © 2014-2018 Technical mechanics


____________________________________________________________________________________________________________________________
GUIDE
FOR AUTHORS
Guide for Authors