TECHNICAL MECHANICS
ISSN (Print): 1561-9184, ISSN (Online): 2616-6380

English
Russian
Ukrainian
Home > Journal Issues > ¹ 1 (2018) Technical mechanics > 5
___________________________________________________

UDC 629.5

Technical mechanics, 2018, 1, 48 - 58

ANALYSIS OF THE ROBUSTNESS OF THE SYSTEM TO CONTROL THE RELATIVE MOTION OF AN ION BEAM SHEPHERD

DOI: https://doi.org/10.15407/itm2018.01.048

Khoroshylov S. V.

      ABOUT THE AUTHORS

Khoroshylov S. V.
Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine
Ukraine

      ABSTRACT

      The goal of the paper is to analyze the robustness of the system to control the ion beam shepherd motion with respect to a space debris object. The robustness was analyzed considering the action of the ion beam, a wide spectrum of orbital disturbances, relative position and actuation errors, the nonstationarity and parametric uncer-tainty of the plant, and limitations on the control action amplitude. Amplitude and phase stability margins were determined for each of the control channels. The stability analysis of a plant with variable coefficients was reduced to the analysis of the robust stability of a system with uncertain parameters. The uncertain parameters of the math-ematical model were represented using a linear fractional transformation. Using this description, the uncertainty of the model was represented as a structured block-diagonal disturbance block. A robustness measure based on the concept of structured singular values was used. The calculated structured singular values demonstrate the system robustness to all the factors under consideration. Pdf (English)







      KEYWORDS

ion beam shepherd, space debris object, controller, robustness, uncertainty, disturbances, structured singular value

      FULL TEXT:

Pdf (English)









      REFERENCES

1. Bombardelli C., Pelaez J. Ion beam shepherd for contactless space debris removal. Journal of Guidance, Control, and Dynamics. 2011. 34. No. 3. Pp. 916-920. https://doi.org/10.2514/1.51832

2. Hua T., Kubiak E., Lin Y., Kilby M. Control/structure interaction during space station greedom-orbiter berthing // The Fifth NASA/DOD Controls-Structures Interaction Technology Conference, Tahoe, Nevada, March 3-5, 1992. Pp. 181-203.

3. Mora E., Ankersen F., Serrano J. MIMO control for 6DoF relative motion. Proceedings of 3rd ESA International Conference on Spacecraft Guidance, Navigation and Control Systems, Noordwijk, The Netherlands, Nov. 26-29, 1996.

4. Ankersen F. Application of CAE methods for the On-Board Flight Control System on the ARC Mission. ESA working paper. 1993. - P. TN/FA-001 Iss. 1.0.

5. Doyle J. C., Stein G. Multivariable Feedback Design: Concepts for a Classical / Modern Synthesis. IEEE Transactions on Automatic Control. 1981. No. 26(1). Pp. 4-16. https://doi.org/10.1109/TAC.1981.1102555

6. Zhao K., Stoustrup J. Computation of the maximal robust H2 performance radius for uncertain discrete time systems with nonlinear parametric uncertainties. International Journal of Control. 1997. No. 67(1). Pp. 33-43. https://doi.org/10.1080/002071797224342

7. Zhou K., Khargonekar P., Stoustrup J., Niemann H. Robust performance of systems with structured uncertainties in state space. Automatica. 1995. No. 31(2). P. 249-255. https://doi.org/10.1016/0005-1098(94)00065-Q

8. Khoroshilov S. V. Space-based solar power station attitude control using an extended state observer. Teh. Meh. 2011. No. 3. Pp.117-125. (in Russian).

9. Alpatov A., Cichocki F., Fokov A., Khoroshylov S., Merino M., Zakrzhevskii A. Determination of the force transmitted by an ion thruster plasma plume to an orbital object. Acta Astronautica. 2016. No. 119. Pp. 241-251. https://doi.org/10.1016/j.actaastro.2015.11.020

10. Alpatov A., Cichocki F., Fokov A., Khoroshylov S., Merino M., Zakrzhevskii A. Algorithm for determination of force transmitted by plume of ion thruster to orbital object using photo camera. 66th International Astronautical Congress, Jerusalem, Israel, 12-16 October, 2015. - 1 DVD-ROM.

11. Fokov A. À., Khoroshilov S. V. Validation of a simplified method to calculate the force exerted by an electrojet engine plume on an orbital object. Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya. 2016. No. 2/129. Pp. 55-66. (in Russian).

12. Bombardelli C., Urrutxua H., Merino M., Ahedo E., Pelaez J. Relative dynamics and control of an ion beam shepherd satellite. Spaceflight Mechanics. 2012. V. 143. Pp. 2145-2158.

13. Khoroshilov S. V. Synthesis of robust controller for ion beam shepherd control system. Teh. Meh. 2017. No. 1. Pp. 26-39. (in Russian). https://doi.org/10.15407/itm2017.01.026

14. Wie B. Space Vehicle Dynamics and Control. Reston: American Institute of Aeronautics and Astronautics, 1998. 660 pp.

15. Ankersen F. Thruster Modulation Techniques: Application to Eureca Attitude and Orbit Control System. ESA working paper. 1989 p. EWP 1528.

16. Lawden D.F. Optimal Trajectories for Space Navigation. London: Butterworths, 1963. 126 pp.

17. Clohessy W., Wiltshire R. Terminal guidance system for satellite rendezvous. Journal of the Aerospace Sciences. 1960. V. 27. No. 9. Pp. 653-658. https://doi.org/10.2514/8.8704

18. Zhou K., Doyle J.C., Glover K. Robust and Optimal Control. NY: Prentice-Hall, 1996. 596 pp.





DOI: https://doi.org/10.15407/itm2018.01.048

Copyright (©) 2018 Khoroshylov S. V.

Copyright © 2014-2018 Technical mechanics


____________________________________________________________________________________________________________________________
GUIDE
FOR AUTHORS
Guide for Authors