TECHNICAL MECHANICS
ISSN (Print): 1561-9184, ISSN (Online): 2616-6380

English
Ukrainian
Home > Journal Issues > No 3 (2024) Technical mechanics > 9
___________________________________________________

UDC 629.7

Technical mechanics, 2024, 3, 124 - 138

METHODOLOGY FOR PHOTOGRAMMETRIC MEASUREMENT OF BACKLASHES AND ELASTIC COMPLIANCES IN HINGE JOINTS OF TRANSPORT MANIPULATORS AND SPACECRAFT BOOMS

Beitsun V. S., Tarasov S. V.

      ABOUT THE AUTHORS

Beitsun V. S.
Oles Honchar Dnipro National University

Tarasov S. V.
2Institute of Transport Systems and Technologies of the National Academy of Sciences of Ukraine

      ABSTRACT

      The experimental study on multi-link structures and their components is of extreme relevance and importance to modern science and technology. These structures are widely used in various fields, including the aerospace and the automotive industry, robotics, and construction. The presence of numerous interconnected components makes their behavior complex and nonlinear. The accuracy and reliability of such systems depend on their dynamic characteristics, which are difficult to predict theoretically due to numerous factors, such as the material compliance, hinge backlashes, and intercomponent interaction.
      This study presents the authors’ verified methodology for experimentally determining backlashes and elastic compliances in hinges of transport manipulators and spacecraft booms, which is based on the photogrammetric method. The versatility of the method as applied to different types of mechanical experiments was analyzed. The obtained measurement accuracy and applicability to various structures under heterogeneous conditions make the methodology substantially universal.
      The methodology was tried out using a two-link fragment of a transport manipulator designed by the authors. A computational scheme was constructed to determine the effect of a hinge backlash. The scheme was used to obtain rotation trajectories of the manipulator section for different backlash values. It was found that photogrammetry can be used to determine the trajectories of each control marker on the hinge throughout its operational time. This allows one to refine computational schemes with calculated backlash values.
      The proposed methodology can easily be adapted to studying the elastic compliance of multi-link structure components in local stiffness reduction zones, such as flange connections and auxiliaries-to-link attachment points.
      The measurement methodology may be used in studying the dynamics of multi-link and ultralong structures by synchronizing several digital cameras. This enables remote monitoring of moving structures in space.
      Pdf (English)







      KEYWORDS

experimental modeling, hinge backlash, manipulator, visual tracking methods, photogrammetry

      FULL TEXT:

Pdf (English)









      REFERENCES

1. Bilous V. V. Photogrammetry. Kyiv: Taras Shevchenko National University of Kyiv, 2021. 137 pp. (in Ukrainian).

2. Dorozhynsyi O. L. Fundamentals of Photogrammetry. Lviv: Lviv Polytechnic National University, 2003. 214 pp. (in Ukrainian).

3. Dorozhynsyi O. L., Tukai P. Photogrammetry. Lviv: Lviv Polytechnic National University, 2008. 332 pp. (in Ukrainian).

4. Penkov V. O. Photogrammetry: Lecture Notes for Bachelors of Science in Geodesy and Management. Kharkiv: O. M. Beketov National University of Urban Economy in Kharkiv, 2019. 100 pp. (in Ukrainian).

5. Al-Ruzouq R., Dabous S. A., Junaid M. T., Hosny F. Nondestructive deformation measurements and crack assessment of concrete structure using close-range photogrammetry. Results in Engineering. 2023. No. 18. Pp. 1-17. https://doi.org/10.1016/j.rineng.2023.101058

6. Alemdar Z. F., Browning J., Olafsen J. Photogrammetric measurements of RC bridge column deformations. Engineering Structures. 2011. No. 33(8). Pp. 2407-2415. https://doi.org/10.1016/j.engstruct.2011.04.015

7. Balanji H. M., Turgut A. E., Tunc L. T. A novel vision-based calibration framework for industrial robotic manipulators. Robotics and Computer-Integrated Manufacturing. 2022. No. 73. Ðp. 1-15. https://doi.org/10.1016/j.rcim.2021.102248

8. Carmo R. N. F., Valenca J., Bencardino F., Cristofaro S., Chiera D. Assessment of plastic rotation and applied load in reinforced concrete, steel and timber beams using image-based analysis. Engineering Structures. 2019. No. 198. Ðp. 1-13. https://doi.org/10.1016/j.engstruct.2019.109519

9. Chamberlain M. K., Kiefer S. H., LaPointe M., LaCorte P. On-orbit flight testing of the roll-out solar array. Acta Astronautica. 2021. No. 179. Ðp. 407-414. https://doi.org/10.1016/j.actaastro.2020.10.024

10. Dabous S. A., Al-Ruzouq R., Llort D. Three-dimensional modeling and defect quantification of existing concrete bridges based on photogrammetry and computer aided design. Ain Shams Engineering Journal. 2023. No. 14(12). Pp. 1-13 https://doi.org/10.1016/j.asej.2023.102231

11. Dong G., Zhu Z. H. Autonomous robotic capture of non-cooperative target by adaptive extended Kalman filter based visual servo. Acta Astronautica. 2016. No. 122. Ðp. 209-218. https://doi.org/10.1016/j.actaastro.2016.02.003

12. Dong G., Zhu Z. H. Position-based visual servo control of autonomous robotic manipulators. Acta Astronautica. 2015. No. 115. Ðp. 291-302. https://doi.org/10.1016/j.actaastro.2015.05.036

13. Dong G., Zhu Z. H. Vision-based pose and motion estimation of non-cooperative target for space robotic manipulators. AIAA SPACE 2014 Conference and Exposition. (San Diego, CA, 2014). San Diego, 2014. Pp. 1-9. https://doi.org/10.2514/6.2014-4263

14. Dong M. L., Deng W. Y., Sun Y. N., Wang Y.Q. Photogrammetric measurement of deformation of large deployable mesh microwave antenna. Key Engineering Materials. 2008. No. 381. Ðp. 309-312. https://doi.org/10.4028/www.scientific.net/KEM.381-382.309

15. Goda I., L'Hostis G., Guerlain P. In-situ non-contact 3D optical deformation measurement of large capacity composite tank based on close-range photogrammetry. Optics and Lasers in Engineering. 2019. No. 119. Ðp. 37-55. https://doi.org/10.1016/j.optlaseng.2019.02.006

16. Guan X., Xu Y., Xing C. A method for rapid measurement of the deformation and spatial attitude of large radar antennas inside radomes. IEEE Access. 2016. No. 4. Pp. 1-10.

17. Guo X., Yuan Y., Suo T., Su X., Liu Y., Ge Z. A novel temperature-strain synchronous measurement method. Optics and Lasers in Engineering. 2021. No. 147. Ðp. 1-7. https://doi.org/10.1016/j.optlaseng.2021.106723

18. Gwashavanhu B., Oberholster A. J., Heyns P. S. Rotating blade vibration analysis using photogrammetry and tracking laser Doppler vibrometry. Mechanical Systems and Signal Processing. 2016. No. 76. Ðp. 174-186. https://doi.org/10.1016/j.ymssp.2016.02.019

19. Iwasa T., Ota K., Harada T., Muramatsu R. High-resolution surface shape measurement of parabola antenna reflector by using grating projection method with virtual targets. Acta Astronautica. 2018. No. 153. Ðp. 95-108. https://doi.org/10.1016/j.actaastro.2018.09.031

20. Koehl M., Delacourt T., Boutry C. Image capture with synchronized multiple-cameras for extraction of accurate geometries. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016. V. XLI-B1. Pp. 653-660. https://doi.org/10.5194/isprsarchives-XLI-B1-653-2016

21. Lee H., Rhee H. 3-D measurement of structural vibration using digital close-range photogrammetry. Sensors and Actuators A: Physical. 2013. No. 196. Ðp. 63-69. https://doi.org/10.1016/j.sna.2013.03.010

22. Li Y., Zhang J., Han J., Cai Z., Wang Y., Li Y. Research on flatness rapid measurement technology of large deployable antenna. IOP Conference Series: Materials Science and Engineering. 2020. No. 816. Ðp. 1-6. https://doi.org/10.1088/1757-899X/816/1/012022

23. Lin G. C., Bai X. H, Tan H. F., Wan Z. M. surface accuracy measurement of a novel inflatable antenna by photogrammetry. Advanced Materials Research. 2011. V. 301-303. Ðp. 713-718. https://doi.org/10.4028/www.scientific.net/AMR.301-303.713

24. Liu T., Burner A. W., Jones T. W., Barrows D. A. Photogrammetric techniques for aerospace applications. Progress in Aerospace Sciences. 2012. No. 54. Ðp. 1-58. https://doi.org/10.1016/j.paerosci.2012.03.002

25. Liu Y., Zhang D., Hu J., Chen W., Gao C., Qiu Z. Design and structural analysis of an inflatable coated fabric manipulation arm. Thin-Walled Structures. 2019. No. 139. Ðp. 310-320. https://doi.org/10.1016/j.tws.2019.03.020

26. Luhmann T. Close range photogrammetry for industrial applications. ISPRS Journal of Photogrammetry and Remote Sensing. 2010. V. 65(6). Ðp. 558-569. https://doi.org/10.1016/j.isprsjprs.2010.06.003

27. Lundstrom T., Baqersad J., Niezrecki C., Avitabile P. Using high-speed stereophotogrammetry techniques to extract shape information from wind turbine/rotor operating data. Conference Proceedings of the Society for Experimental Mechanics Series. 2012. V. 6(26). Pp. 269-275. https://doi.org/10.1007/978-1-4614-2419-2_26

28. Ma X., Song Q., Jia Q., Fang H., Chen G. Design and experiment for a high precision reflector. IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM). 2017. Ðp. 42-47. https://doi.org/10.1109/ICCIS.2017.8274746

29. Ou Y., Tatsis K. E., Dertimanis V. K., Spiridonakos M. D., Chatzi, E. N. Vibration-based monitoring of a small-scale wind turbine blade under varying climate conditions. Part I: An experimental benchmark. Struct. Control. Health Monit. 2021. V. 28(6). Pp.1-18. https://doi.org/10.1002/stc.2734

30. Sabatini M., Monti R., Gasbarri P., Palmerini G. Deployable space manipulator commanded by means of visual-based guidance and navigation. Acta Astronautica. 2013. No. 83. Pp. 27-43. https://doi.org/10.1016/j.actaastro.2012.10.015

31. Shankar N. U., Duraichelvan R., Ateequlla C. M. et al. Photogrammetric measurements of a 12-meter preloaded parabolic dish antenna. National Workshop on the Design of Antenna & Radar Systems (DARS), (Bangalore, 13-14 February 2009). Bangalore, 2009. Pp. 1-7.

32. Shen J., Wheeler C., O'Shea J., Ilic D. Investigation of the dynamic deflection of conveyor belts via experimental and modelling methods. Measurement. 2018. No. 127. Ðp. 210-220. https://doi.org/10.1016/j.measurement.2018.05.091

33. Sun Z., Zhang Y., Yang D. Structural design, analysis, and experimental verification of an H-style deployable mechanism for large space-borne mesh antennas. Acta Astronautica. 2021. No. 178. Ðp. 481-498. https://doi.org/10.1016/j.actaastro.2020.09.032

34. Tian Q., Flores P., Lankarani H. M. A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mechanism and Machine Theory. 2018. No. 122. Pp.1-57. https://doi.org/10.1016/j.mechmachtheory.2017.12.002

35. Uheida K., Deng Y., Zhang H., Galuppi L., Gao J., Xie L., Mohamed A. Determining equivalent-sectional shear modulus in torsion tests for laminated glass beams using photogrammetry method. Composite Structures. 2021. No. 276. Pp. 1-14. https://doi.org/10.1016/j.compstruct.2021.114572

36. Winstroth J., Schoen L., Ernst B., Seume J. R. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine. Journal of Physics: Conference Series. 2014. Ser. 524. https://doi.org/10.1088/1742-6596/524/1/012064

37. Winstroth J., Seume J.R. Wind turbine rotor blade monitoring using digital image correlation: 3d simulation of the experimental setup. Journal of Physics: Conference Series. 2014. Ser. 524. https://doi.org/10.1088/1742-6596/524/1/012064

38. Wu T., Tang L., Du P., Liu N., Zhou Z., Qi X. Non-contact measurement method of beam vibration with laser stripe tracking based on tilt photography. Measurement. 2022. No. 187. Pp. 1-12. https://doi.org/10.1016/j.measurement.2021.110314

39. Xiao Z., Liang J., Yu D., Asundi A. Large field-of-view deformation measurement for transmission tower based on close-range photogrammetry. Measurement. 2011. No. 44. Ðp. 1705-1712. https://doi.org/10.1016/j.measurement.2011.07.009

40. Xu Y., Guan F. Structure design and mechanical measurement of inflatable antenna. Acta Astronautica. 2012. No. 76. Ðp. 13-25. https://doi.org/10.1016/j.actaastro.2012.02.005

41. Yang J., Peng H., Zhou W., Zhang J., Wu Z. A modular approach for dynamic modeling of multisegment continuum robots. Mechanism and Machine Theory. 2021. No. 165. Ðp. 1-22. https://doi.org/10.1016/j.mechmachtheory.2021.104429





Copyright (©) 2024 Beitsun V. S., Tarasov S. V.

Copyright © 2014-2024 Technical mechanics


____________________________________________________________________________________________________________________________
GUIDE
FOR AUTHORS
Guide for Authors ==================== Open Access Policy
Open Access Policy ==================== REGULATIONS
on the ethics of publications
REGULATIONS on the ethics of publications ====================