TECHNICAL MECHANICS
ISSN (Print): 1561-9184, ISSN (Online): 2616-6380

English
Russian
Ukrainian
Home > Journal Issues > ¹ 4 (2015) Technical mechanics > 14
___________________________________________________

UDC 519.172.1:.6/519.245/533.5

Technical mechanics, 2015, 4, 155 - 168

UNSTRUCTURED GRIDS AND THEIR APPLICATIONS TO NUMERICAL SIMULATION USING TEST PARTICLES METHOD

T. G. Smelaya

      ABSTRACT

      Discretization of the computational domain has an important impact on the solution of problems on the rarified gas dynamics. An appropriate selection of the type of the grid used is the pressing problem for statistical methods, in particular for the test particles method (TPM) because their effectiveness depends directly on the amount of tests conducted, namely, expended resources. The paper objective is to study possible topological variations in unstructured computational grids for the classification and analysis of their properties and special features of use. In order to solve the Bolzman equation using the test particles method, it is necessary to select the most rational computational grid. Most popular criteria for controlling the quality of the computational unstructured grid in the process of its generation are presented. Computational grids are classified in accordance with cells used, a level of coincidence of nodes of neighboring cells, the type of hierarchic organization and uniformity of geometric parameters. The advantages and possible applications of types of grids under consideration are reported. Various types of grids for their applications to problems of the TPM simulation of rarified gas flows are analyzed. It was found that computational unstructured grids are better for these purposes since they change easy grid sizes within the limits of the computational domain. Among computational grids used hierarchically organized structures with a minimal level of embedding, which are structured and uniform at each level, are optimal. The multiplicity of partitioning the root cells can be variable and dependent on parameters of local flow conditions. Such computational grids represent the basic advantages of structured and unstructured grids: a high-efficiency access for all of the grid elements, the possibility of local crowding, and the algorithm vectorization for multidimensional problems. Results will be used to build operational algorithms of the TPM simulation of molecular motion trajectories resulting in a more efficient examination and support for projects of the National Space Program of Ukraine. Pdf (English)







      KEYWORDS

test particles method, computational unstructured grid, hierarchy organization, multiplicity of partitioning root cells.

      FULL TEXT:

Pdf (English)









      REFERENCES

1. Smelaya T. G. Selection of computational grid for simulation of rarified gas flows using test particles method (in Russian) / T. G. Smelaya // Tekhnicheskaya Mekhanika. – 2013. – No 1. – P. 45 – 60.

2. Knupp P. Algebraimesh quality metris / P. Knupp // SIAM J. Si. Comput. – 2001. – Vol. 23, N 1. – P. 193 – 218.

3. Shaydurov V. V. Multigrid Methods of Finite Elements (in Russian) / V. V. Shaydurov. – Moscow : Nauka, 1989. – 288 p.

4. Parthasarathy V. N. Comparison of Tetrahedron Quality Measures / V. N. Parthasarathy, C. M.Graichen, A. F. Hathaway // Finite Elements in Analysis and Design. – Elsevier, 1993. – N. 15. – P. 255 – 261.

5. Lopez E. Simultaneous untangling and smoothing of moving and fixed grids / E. Lopez, N. Nigro, M. Storti // Int. J. Numer : Meth. Engrg. – 2000. – No 10. – P. 1 – 6.

6. Thopmson J. F. Boundary-fitted coordinate systems for numerical solution of partial differential equations – a review / J. F. Thopmson, Z. U. A. Warsi, C. W. Mastin // J. Comput. Phys. – 1982. – Vol. 47. – P. 1 – 108.

7. Jones M. E. Electromagnetic PIC codes with body-fitted coordinates / M. E. Jones // Proc. 12th Int. Conf. on the Numerical Simulation of Plasmas. – 1984. – P. 27 – 28.

8. Westermann T. Numerical modelling of the stationary Maxwell–Lorentz system in technical devices / T. Westermann // International Journal of Numerical Modelling: Electronic Network, Devices and Fields. – 1994. – Vol. 7. – P. 43 – 67.

9. Halter E. A concept for numerical solution of the Maxwell–Vlasov system / E. Halter, M. Krauss, C.-D. Munz // Forschungszentrum karlsruhe - umwelt und technik umwelt und technik. – 1995. – 87 p.

10. Prathap G. Finite elements as computation / G. Prathap. – Bangalore : CMMMACS, 2001. – 116 p.

11. Oleynikov A. I. Effects of the type of finite-element presentation in modelling shapes of panels from elasto-plastic material (in Russian) / A. I. Oleynikov, S. N. Korobeynikov, K. S. Bormotin // Vychislitelnaya Mekhanika Sploshnykh Sred. – 2008. – Vol. 1, No 2. – P. 63 – 73.

12. Kopysov S. P. Domain decomposition for parallel adaptive unite element algorithm / S. P. Kopysov, A. K. Novikov // Vestn. Udmurt. Univ. Mat. Mekh. Kompyut. Nauki. – 2010. – No 3. – P. 141 – 154.

13. Kopysov S. P. Parallel algorithms of adaptive refinement and partitioning of unstructured grids / S. P. Kopysov, A. K. Novikov // Matematicheskoe Modelirovanie. – 2002. – Vol. 14, No 9. – P. 91 – 96.

14. Kopysov S. P. Analysis of methods for building trihedral finite-element meshes (in Russian) / S. P. Kopysov, A. K. Novikov // Transactions of Mathematical Center named after N. I. Lobachevsky. – Kazan: Publishing House of Kazan Mathematical Society, 2003. – Vol. 20. – P. 170 – 180.

15. Karavaev A. S. Reconstruction of unstructured quadrilateral and mixed meshes (in Russian) / A. S. Karavaev, S. P. Kopysov // Vestnik Udmurdskogo Universiteta. Matematika, Mekhanika, Kompyuternye Nauki. – 2013. Issue 4. – P. 62 – 78.

16. Garimella R. Conformal refinement of unstructured quadrilateral meshes / R. Garimella // 18th International Meshing Roundtable. – Springer-Verlag, 2009. – P. 31 – 44.

17. Shneiders R. Rening quadrilateral and hexahedral element meshes / R. Shneiders // 5th International Conference on Grid Generation in Computational Field Simulations. – 1996. – P. 679 – 688.

18. Benek J. A. Extended chimera grid embedding scheme with application to viscous flows / J. A. Benek, T. L. Donegan // Computational Fluid Dynamics: 8th AIAA Conference : Proceedings (9-11 June, 1987, Honolulu). – New York: AIAA, 1987. – P. 272 – 282.

19. Samet H. Implementing Ray Tracing with Octrees and Neighbor Finding / H. Samet // Computer and Graphics. – 1989. – Vol. 13, N 4. – P. 445 – 460.

20. Samet H. The Quadtree and Related Hierarhical Data Structures / H. Samet // ACM Comput. Surveys. – 1984. – Vol. 16, No 2. – P. 187 – 260.

21. Samet H. Computing Geometric Properties of Images Represented by Linear Quadtrees / H. Samet, M. Tamminen // IEEE Transaction on Patter Analysis and Machine Intelligenc. – 1985. – Vol. 7, No 2. – P. 229 – 240.

22. Samet H. Neighbor Finding Techniques for Images Represented Quadtrees / H. Samet // Computer Graphics and Image Processing. – 1982. – Vol. 17, No 1. – P. 37 – 57.

23. Burroughs P. A. Principles of Geographical Information Systems for Land Resources Assessment / P. A. Burroughs. – Oxford: Clarendon Press, 1994. – 193 p.

24. Samet H. The Design and Analysis of Spatial Data Structures / H. Samet. – 1990. – 499 p.

25.Mathematics. Octrees. – 2011. – http://49l.ru/a/oktoderevo.

26. Carlbom I. A Hierarchical Data Structure for Representing the Spatial Decomposition of 3D Objects / I. Carlbom, I. Chakravarty and D. Vanderschel // Frontiers in Computer Graphics. – New York : Springer-Verlag, 1985. – P. 2 – 12.

27. Danilov A. A. Technology for Building Unstructured Grids and Monotonic Quantification of Diffusion Equation: Cand. Sc. (Phys.-Math.) Thesis: 05.13.18 (in Russian) / Danilov Aleksandr Anatolievich. – Moscow, 2002. – 215 p.

28. Automatized Technologies for Building Computational Unstructured Grids (in Russian) / Yu. V. Vassilevsky, A. A. Danilov, K. N. Lipnikov, V. N. Chugunov. – Moscow : Fizmatlit, 2013. – 133 p.

29. Differential Schemes on Non-Regular Grids (in Russian) / A. A. Samarsky, A. V. Koldoba, Yu. A. Poveshchenko, V. F. Tishkin, A. P. Favorsky. – Minsk, 1996. – 276 p.

30. Pecheritsa L. L. Construction of optimal algorithms for test particles method in rarified gas dynamics (in Russian) / L. L. Pecheritsa, T. G. Smelaya, N. V. Petrushenko // Current Problems in Rarified Gas Dynamics : 4th All-Russian Conference: Proceedings (July 26 -29, 2013). – Novosibirsk, 2013. – P. 164 – 166.

31. Galanin M. P. Development and Realization of Algorithms of 3D Triangulation of Complex 3D Regions; Direct Methods (in Russian) / M. P. Galanin, I. A. Shcheglov. – Moscow, 2006. – 32 p. (Preprint/ IPM im. M. V. Keldysha RAN, No 10)

32. Fletcher K. Computational Methods for Fluid Dynamics: in 2 volumes (in Russian) / K. Fletcher. – Moscow : Mir, 1991. – 1056 p.

33. Galanin M. P. Development and Realization of Algorithms of 3D Triangulation of Complex 3D Regions: Iterative methods (in Russian) / M. P. Galanin, I. A. Shcheglov. – Moscow, 2006. – 32 p. (Preprint/ IPM im. M. V. Keldysha RAN, No 9)

34. Rubbert P. Patched coordinate systems / P. E. Rubbert, K. D. Lee // Numerical Grid Generation / Edited by J. F. Thompson. – 1982. – P. 235 – 252.





Copyright (©) 2015 T. G. Smelaya

Copyright © 2014-2018 Technical mechanics


____________________________________________________________________________________________________________________________
GUIDE
FOR AUTHORS
Guide for Authors