|
Home
>
Journal Issues
>
¹ 2 (2014) Technical mechanics
>
5
___________________________________________________
UDC 629.78
Technical mechanics, 2014, 2, 43 - 51
ANALYSIS OF USE OF AERODYNAMIC SYSTEMS TO
DEORBIT MODULAR LARGE-SIZED SPACE OBJECTS FROM LOW NEAR-EARTH ORBITS
Paliy A. S., Skorik A. D.
This paper deals with the analysis of the feasibility of aerodynamic deorbiting systems (ADS)
to deorbit modular large-sized space objects (MLSO) from low earth orbit. The objective of this
paper is to study the feasi-bility ADS to deorbit MLSOs from low earth orbit. The feasibility
of aerodynamic deorbiting systems in the form of a single spherical shell for deorbiting modular
large-sized space objects from low earth orbit is analyzed. It is shown that this is unsuitable
for use. The method for deorbiting modular large-sized space objects from low earth orbits
is presented. The method for deorbiting MLSOs is examined where each module is preliminarily
equipped by an autonomous ADS and all modules are separated from the reference module before
deorbiting. Criteria for estimation of the feasibility of ADS are selected. Studies
of the feasibility of ADS for deorbiting the Mir Space Station from low earth orbit are conducted
using selected criteria. The parameters of aerodynamic deorbiting systems for each module
of the Mir Space Station are calculated considering the damaging effects of space on the ADS shell.
The efficiency of the method proposed is estimated.
space debris, aerodynamic removal system, large-sized modular space structure
1. The Orbital Debris Quarterly News. NASA JSC Houston. – 2013. – Vol. 17, ¹ 1. – P. 8.
2. IADC Space debris mitigation guidelines. IADC-2002-01. Revision 1 / Prepared by the IADC Steering Group and WG4 members . – 2003 . – September . – 10 p. http://www.iadc-online.org/index.cgi?item=docs_pub.
3. Man-Made Growth of Debris in Near Space (in Russian) / A. P. Alpatov, V. P. Bass, S. A. Baulin, V. I. Brazin-sky, V. P. Gusysnin, Yu. F. Daniev, S. A. Zasukha. – Dniepropetrovsk: Porogi, 2012. – 380 p.
4. Veniaminov S. S. Space Debris is a Threat for Mankind (in Russian) / S. S. Veniaminov, A. M. Chervonov. – Moscow: Federal State Budget Scientific Institution Institute for Space Research of the Russian Academy of Sciences, 2012. - 191 p.
5. Nock K. T. Removing orbital debris with less risk / K. T. Nock, K. M. Aaron , D. McKnight // Journal of space-craft and rockets. – 2013. – Vol. 50, ¹ 2. – P. 365 – 379.
6. Lisov I. Earth without Mir. Last month (in Russian) / I. Lisov // Novosti Kosmonavtiki. – 2001. Vol. 11, No 5. – P. 2 – 11.
7. Ivanov N. M. Preparation and implementation of the Mir flight control in the final phase / N. M. Ivanov // Pro-ceedings of the International Workshop "MIR Deorbit", 14 May 2001, ESOC, Darmstadt, Germany. – P. 11 – 23.
8. Paliy A. S. Methods and facilities for removal of spacecraft from operational orbits (current state of the prob-lem) (in Russian) / A. S. Paliy // Tekhnicheskaya Mekhanika. – 2012. – No 1. – P. 94 – 102.
9. Gossamer orbit lowering device (GOLD) for safe and efficient de-orbit / K. T. Nock, K. L. Gates, K. M. Aaron , A. D. McRonald // AIAA/AAS Astrodynamics specialist conference, 2 – 5 August 2010, Toronto, Ontario, Canada, AIAA 2010-782.
10. US Patent for Invention 3282539, IPC7 B 64 G 1/62. Recovery System / H. W. Wiant. – 420836; filed 23.12.1964; published 01.11.1966.
11. US Patent for Invention 4504031, IPC7 B 64 G 1/58. Aerodynamic Braking and Recovery Method for a Space Vehicle / D. G. Andrews. – 353828; filed 02.03.1982; published 12.03.1985.
12. US Patent for Invention 4832288, IPC7 B 64 G 1/62. Recovery System / R. T. Kendall. – 76631; filed 23.07.10987; published 23.03.1989.
13. US Patent for Invention 6264144, IPC7 B 64 G 1/14. Material Assembly for an Inflatable Aerodynamic Brak-ing Device for Spacecraft Deceleration and the Like / J. M. Thornton. – 09/520533; filed 08.03.2000; pub-lished 24.06.2001.
14. RF Patent for Invention 2199474, IPC7 B 64 G 1/22. Device of Inflatable Passive System of Decelerating the Last Stage of Launch Vehicle (in Russian) / Yu. N. Mayorov, A. D. Dukin. – 2000131539/28; filed 15.12.2000; published 27.02.2003.
15. US Patent for Invention 6830222, IPC7 B 64 G 1/62. Balloon Device for Lowering Space Object Orbits / K. T. Nock, A. D. McRonald, K. M. Aaron. – 10/394447; filed 21.03.2003; published 14.12.2004.
16. RF Patent for Invention 2363627, IPC7 B 64 G 1/62. Technique and Device of Aerodynamic Stabilization of Spacecraft during Re-Entry (in Russian) / J. Moulin, E. Muano, M. Prampoloni. – 2006144850/11;
filed 16.05.2005; published 10.08.2009.
17. RF Patent for Invention 2435711, IPC7 B 64 G 1/62. Deployemented Aerodynamic Surface for Aerodecelerat-ing a Satellite (in Russian) / V. Peypuda, O. Le Coule. – 2008138539/11; filed 14.02.2007; published 10.12.2011.
18. Ukraine Patent for Usable Model 75540, B 64 G 1/62. Device for Spacecraft Deorbiting (in Ukrainian) / O. S. Paliy. – u201204438; filed 09.04. 2012; published 10.12.2012.
19. Modern state of problem in application of technology of inflatable structural members for rocket and space technology, use of inflatable decelerators for re-entry vehicles and their heat-protective coatings (in Russian) / B. A. Zemlyansky, A. A. Ivankov, S. N. Ustinov, V. S. Finchenko // Vestnik RFFI. – 2008. – No 1. P. 37 – 63.
20. Aleksashkin S. N. Principles for designing atmospheric planet descent vehicles with inflatable decelerators (in Russian) / S. N. Aleksashkin, K. M. Pichkhadze, V. S. Finchenko // Vestnik NPO im. S. A. Lavochkin. – 2012. – No 2. – P. 4 – 11.
21. A historical review of inflatable aerodynamic decelerator technology development / B. P. Smith, G. L. Tanner, M. Mahzari, I. G. Clark, R. D. Braun // IEEAC paper #1276. – http://www.ssdl.gatech.edu/papers/conferencePapers/IEEE-2010-1276.pdf.
22. Ivanov P. I. Methods of implementation and keeping a high-altitude aerodynamic decelerator in deployment (in Russian) / P. I. Ivanov, Yu. G. Mekhonoshin // Aerodinamika, Dinamika, Ballistika i Upravlenie Poletom Letatelnykh Apparatov. – 2009. – No 5. – P. 51 – 57.
23. Development of a generic inflatable de-orbit device for cubesats / D. S. Maesen E. D. van Breukelen, B. T. C Zandbergen, O. K. Bergsma // 58th International Astronautic Congress, September 24 – 28, 2007, Hy-derabad, Andhra Pradesh, India, IAC-07-A6.3.06.
24. Summary of Properties for Kapton® Polyimide Films http://www2.dupont.com/Kapton/en_US/assets/downloads/pdf/summaryofprop.pdf.
25. Jenkins C. H. M. Gossamer Spacecraft : Membrane and Inflatable Structures and Technology for Space Ap-plications / C. H. M. Jenkins. – AIAA, Reston (USA), 2001. – 586 p.
26. Space Model: Scientific and Information Edition: in two volumes (in Russian) / Edited by M. I. Panasyuk, L. I. Novikov. – Vol. 2: Effect of Space on Spacecraft Materials and Equipment. Moscow: KDU, 2007. – 973 p.
27. Paliy A. S. Analysis of effectiveness of aerodynamic spacecraft decelerator (in Russian) / A. S. Paliy // Tekhnicheskaya Mekhanika. – 2012. – No 4. – P. 82 – 90.
28. Liao L. A review of airship structural research and development / L. Liao, I. Pasternak // Progress in aero-space sciences. – 2009. – ¹ 45. – P. 83 – 96.
29. Application for Patent for Invention No a 201309842 Ukraine, IPC7 B 64 G 1/62. Method for Deorbiting Modular Large-Sized Space Objects from Near-Earth Orbit (in Ukrainian) / A. P. Alpatov, O. S. Paliy, O. D. Skorik. – a201309842; applicant and patentee ITM, NASU&SSAU. – filed 08.08. 2013.
30. Skorik A. D. Selection of design parameters for aerodynamic systems of removal of spacecraft from near-earth orbits (in Russian) / A. D. Skorik, A. S. Paliy // Tekhnichrskaya Mekhanika. – 2013. – No 3. – P. 85 – 90.
31. Thermospheric temperature, density, and composition : New models : special report ¹375 / Smithsonian institution astrophysical observatory ; chief L. Jacchia. – Cambridge, 1977. – 103 p.
Copyright (©) 2014 Paliy A. S., Skorik A. D.
Copyright © 2014-2018 Technical mechanics
____________________________________________________________________________________________________________________________
|
GUIDE FOR AUTHORS
|