Home
>
Journal Issues
>
¹ 3 (2014) Technical mechanics
>
10
___________________________________________________
UDC 517.938
Technical mechanics, 2014, 3, 87 - 93
CONDITIONS OF STABILITY OF SWITCHING SYSTEMS
Poslavsky S. Yu.
Dynamic systems described by a combination of differential equations and a discrete switching signal
are examined. The research objective is to find an upper estimate for the Lyapunov maximum exponent
of the switched system and conditions for exponential stability. New conditions for exponential
stability have been found using qualitative analytic methods of differential equations. The results
can be employed to investigate the stability of the various systems of automatic control and other
dynamic systems.
switching systems, discrete switching, stability conditions, non-linear system, delay
1. Barbashin Ye. A. Introduction in the Stability Theory (in Russian) / Ye. A. Barbashin. – Moscow: Nauka, 1967. – 224 p.
2. Emelyanov S. V. Systems of Automatic Control with Variable Structure (in Russian) / S. V. Emelyanov. – Moscow: Nauka, 1967. – 336 p.
3. Martynyuk A. A. On the stability of systems with developing disturbances (in Russian) / A. A. Martynyuk // Doklady AN USSR, Seria A. – 1975. – No 7. – P. 613 – 616.
4. Martynyuk A. A. Analysis of stability of continuous systems with structure disturbances (in Russian) / A. A. Martynyuk // Prikladnaya Mekhanika. – 2002. – Vol. 38, No 7. – p. 25 – 52.
5. Filippov A. F. Conditions of stability of homogenous systems with discrete switching (in Russian) / A. F. Fil-ippov // Avtomatika i Telemekhanika. – 1980. – No 8. – P. 48 – 55.
6. Lin H. Stability and Stabilizability of Switched Linear Systems : A Survey of Recent Results / H. Lin, P. J. Antsaklis // IEEE Trans. Automat. Control. – 2009. – Vol. 54. – P. 308 – 322.
7. Vassiliev S. N. On the some results on stability of switched and hybrid systems (in Russian) / S. N. Vassiliev, A. I. Malikov // Actualnye Problemy Mekhaniki Sploshnoy Sredy. - Kazan: Foliant. – 2011. – Vol. P. 23 – 81.
8. Zevin A. A. General Solution of Stability Problem for Plane Linear Switched Systems and Differential Inclu-sions / A. A. Zevin, M. A. Pinsky // IEEE Trans. Automat. Control. – 2008. – Vol. 53. – P. 2149 – 2153.
9. Stability analysis for a class of nonlinear switched system / H. Bo, X. Xuping, A. N. Michel, P. J. Antsaklis // Proceedings of the 38th IEEE Conference on Decision and Control. – 1999. – V. 5. – P. 4374 – 4379.
Copyright (©) 2014 Poslavsky S. Yu.
Copyright © 2014-2018 Technical mechanics
____________________________________________________________________________________________________________________________
|