|
Home
>
Journal Issues
>
¹ 2 (2014) Technical mechanics
>
12
___________________________________________________
UDC 532.516
Technical mechanics, 2014, 2, 106 - 119
CONTROL OF SEPARATION OF AIR FLOW ALONG CYLINDER USING PLASMA ACTUATORS
Redchits D. A.
The research aim is to develop an approach to modeling a dielectric barrier discharge
when a plasma actua-tor is in a mobile continuous medium. Based on a physical model
of the dielectric barrier discharge, the mathe-matical model describing the transient
electric and aerodynamic processes in operation of the plasma actuator is built.
A numerical algorithm for solving the equations of plasma electrodynamics and equations
of a viscous incompressible flow, including turbulence, in curvilinear coordinates
on moving grids for modeling the dielectric barrier discharge is developed using
the control volume method. The possibility of reducing the drag coefficient
of the cylinder is demonstrated using the plasma actuators by suppressing the Karman
vortex street. The obtained results of the flow around a cylinder for the case
of turned on/off plasma actuators agree closely with the experi-mental data.
This approach is applicable to the simulation of the dynamics of the fluid flow
and low-speed gas in the presence of an electrostatic field. The proposed technique
takes into account the physical features of the class of problems under consideration
and has a high computational efficiency.
control of viscous liquid flow, numerical simulation, plasma actuator, dielectric barrier discharge, Navier-Stokes equations
1. Loytsyansky L. G. Fluid Mechanics (in Russian) / L. G. Loytsyansky. – Moscow: Nauka, 1987. – 840 p.
2. Corke T. Application of weakly ionized plasmas as wing flow control devices / T. Corke, E. Jumper, M. Post, D. Orlov// AIAA Paper. – 2002. – ¹ 350. – P. 15.
3. Corke T. Boundary Layer Instability on a Sharp Cone at Mach 3.5 with Controlled Input / T. Corke, D. Cava-lieri, E. Matlis// AIAA Journal. – 2002. – Vol. 40, ¹ 5. – P. 1015 – 1018.
4. Durscher R. Induced flow from serpentine plasma actuators acting in quiescent air / R. Durscher, S. Roy // AIAA Paper. – 2011. – ¹ 957. – P. 12.
5. Plasma structure in the aerodynamic plasma actuator / C. Enloe, T. McLaughlin, R. VanDyken, J. Fuscher // AIAA Paper. – 2004. – ¹ 844. – P. 9.
6. Font G. Plasma Discharges in Atmospheric Pressure Oxygen for Boundary Layer Separation Control / G. Font, W. L. Morgan // AIAA Paper. – 2005. – ¹ 4632. – P. 16.
7. Hall K. D. Potential flow model for plasma actuation as a lift enchancement device / K. D. Hall // Master's thesis, University of Notre Dame, 2004. – P. 158.
8. Modeling of interaction between weakly ionized near surface plasmas and gas flow / A. Likhanskii, M. Shneider, S. Macheret, R. Miles // AIAAPaper. – 2006. – ¹1204. – P.11.
9. Massines F. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier / F. Massines, A. Rabehi, P. Decomps // Journal of Applied Physics. – 1998. – Vol. 83, ¹ 6. – P. 2950 – 2957.
10. Roe P. L. Approximate riemann schemes / P. L. Roe // J.of Comp.Physics. – 1981. – Vol.43. – P. 357 – 372.
11. Rogers S. E. An upwind differencing scheme for the time-accurate incompressible Navier–Stokes equations / S. E. Rogers, D. Kwak // AIAA Journal. – 1990. – Vol.28, ¹ 2. – P. 253 – 262.
12. Roy S. Modeling surface discharge effects of atmospheric RF on gas flow control / S. Roy, D. V. Gaitonde// AIAA Paper. – 2005. – ¹ 160. – P. 14.
13. Restatement of the Spalart-Allmaras eddy-viscosity model in strain-adaptive formulation / T. Rung, U. Bunge, M. Schatz, F. Thiele // AIAA Journal. – 2003. – Vol. 4, ¹ 7. – P.1396 – 1399.
14. Shyy W. Modeling of glow discharge–induced fluid dynamics / W. Shyy, B. Jayaraman, A. Andersson// Jour-nal of Applied Physics. – 2002. – Vol. 92. – P. 6434 – 6443.
15. Spalart P. R. A one–equation turbulence model for aerodynamic flow / P. R. Spalart, S. R. Allmaras // AIAA Paper. – 1992. – ¹ 439. – P. 21.
16. Suzen Y. B. Numerical simulations of plasma based flow control applications/ Y. B. Suzen, P. G. Huang, J. D. Jacob// AIAA Paper. – 2005. – ¹ 4633. – P. 14.
17. Thomas F. O. Numerical simulations of plasma based flow control applications / F. O. Thomas, A. I. Kozlov, T. C. Corke // AIAA Paper. – 2006. – ¹ 2845. – P. 16.
18. Whitfield D. L. Numerical solution of the two–dimensional time–dependent incompressible Euler equations / D. L. Whitfield, L. K. Taylor // Mississippi state university NACA–CR–195775. – 1994. – P. 65.
Copyright (©) 2014 Redchits D. A.
Copyright © 2014-2018 Technical mechanics
____________________________________________________________________________________________________________________________
|
GUIDE FOR AUTHORS
|