TECHNICAL MECHANICS
ISSN (Print): 1561-9184, ISSN (Online): 2616-6380

English
Ukrainian
Home > Journal Issues > No 4 (2024) Technical mechanics > 8
___________________________________________________

UDC 539.3

Technical mechanics, 2024, 4, 72 - 88

NONLINEAR MODES OF A NONLINEARLY DEFORMED BEAM WITH A BREATHING CRACK

Malyshev S. Ye., Avramov K. V.

      ABOUT THE AUTHORS

Malyshev S. Ye.
National Technical University «Kharkiv Polytechnical Institute»

Avramov K. V.
A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

      ABSTRACT

      Two types of partial differential equations, which describe geometrically nonlinear vibrations of a beam with a breathing crack, are derived. Thus, two sources of nonlinearities are considered. The crack function is used to describe the 3D strain state near the crack in the first model. Delta functions are used to describe the crack in the second model. The Hu-Washizu variational principle is used to derive the partial differential equations of the first model. The Hamilton principle is used to derive the partial differential equations for the second model. The obtained partial differential equations are reduced to integro-differential ones by neglecting the longitudinal inertia and accounting for the boundary conditions. A contact parameter is used to describe the nonlinear breathing of the crack. The Galerkin technique is used to obtain a nonlinear system of ordinary differential equations with both polynomial nonlinearity and piecewise linear functions. To study nonlinear vibrations numerically, the collocation method is used together with an algorithm of solution continuation along the arclength using an automatic differentiation technique, which allows one to combine the accuracy of analytical differentiation with the simplicity of numerical differentiation. is used to analyze numerically nonlinear oscillations. A monodromy matrix and its eigenvalues, which are called multipliers, are calculated to analyze the stability and bifurcations of the periodic motions. The backbone curves of nonlinear modes contain two loops, saddle-node bifurcations, and Naimark-Sacker bifurcations. As follows from the numerical analysis, the nonlinear modes in the configurational subspace are essentially curved. Moreover, the nonlinear modes on the backbone curve loops have an oscillating appearance in configurational subspace. These loops may be indicative of closed loops of forced vibrations.
      Pdf (English)







      KEYWORDS

nonlinear vibrations of curved beams, breathing crack, Galerkin technique, nonlinear modes, Naimark-Sacker bifurcation

      FULL TEXT:

Pdf (English)









      REFERENCES

1. Bovsunovsky A., Surace C. Non-linearities in the vibrations of elastic structures with a closing crack: A state of the art review. Mech. Syst. and Signal Proc. 2015. V. 62-63. Pp. 129-148. https://doi.org/10.1016/j.ymssp.2015.01.021

2. Christides S., Barr A.D.S. One-dimensional theory of cracked Bernoulli-Euler beams. Int. J. Mech. Sci. 1984. V. 26. Pp. 639-648. https://doi.org/10.1016/0020-7403(84)90017-1

3. Shen M.H.H., Pierre C. Free vibrations of beams with a single-edge crack. J. Sound Vib. 1994. V. 170. Pp. 237-259. https://doi.org/10.1006/jsvi.1994.1058

4. Shen M.H.H., Chu Y.C. Vibrations of beams with a fatigue crack. Comp. Struct. 1992. V. 45. Pp. 79-93. https://doi.org/10.1016/0045-7949(92)90347-3

5. Chu Y.C, Shen M.H.H. Analysis of forced bilinear oscillators and the application to cracked beam dynamics. AIAA J. 1992. V. 30. Pp. 2512-2519. https://doi.org/10.2514/3.11254

6. Chondros T.G., Dimarogonas A.D., Yao J. A continuous cracked beam vibration theory. J. Sound Vib. 1998. V. 215. Pp. 17-34. https://doi.org/10.1006/jsvi.1998.1640

7. Chati M., Rand R., Mukherjee S. Modal analysis of a cracked beam. J. Sound Vib. 1997. V. 207. Pp. 249-270. https://doi.org/10.1006/jsvi.1997.1099

8. Tsyfansky S.L., Beresnevich V.I. Detection of fatigue cracks in flexible geometrically non-linear bars by vibration monitoring. J. Sound Vib. 1998. V. 213. Pp. 159-168. https://doi.org/10.1006/jsvi.1998.1502

9. Caddemi S., Cali I., Marletta M. The non-linear dynamic response of the Euler-Bernoulli beam with an arbitrary number of switching cracks. Int. J. Non-Linear. Mech. 2010. V. 45. Pp. 714-726. https://doi.org/10.1016/j.ijnonlinmec.2010.05.001

10. Carneiro G.N., Ribeiro P. Vibrations of beams with a breathing crack and large amplitude displacements. J. Mech. Eng. Sci. 2016. V. 230. Pp. 34-54. https://doi.org/10.1177/0954406215589333

11. Bikri K. El., Benamar R., Bennouna M.M. Geometrically non-linear free vibrations of clamped-clamped beams with an edge crack. Comp. Struct. 2006. V. 84. Pp. 485-502. https://doi.org/10.1016/j.compstruc.2005.09.030

12. Sinha J.K., Friswell M.I., Edwards S. Simplified models for the location of cracks in beam structures using measured vibration data. J. Sound Vib. 2002. V. 251. Pp. 13-38. https://doi.org/10.1006/jsvi.2001.3978

13. Ostachowicz W.M., Krawczuk M. Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J. Sound Vib. 1991. V. 150. Pp. 191-201. https://doi.org/10.1016/0022-460X(91)90615-Q

14. Plakhtienko N.P., Yasinskii S.A. Resonance of second order in vibrations of a beam containing a transverse crack. Strengh Mater. 1995. V. 27. Pp. 146-152. https://doi.org/10.1007/BF02209480

15. Avramov K., Raimberdiyev T. Modal asymptotic analysis of sub-harmonic and quasi-periodic flexural vibrations of beams with cracks. Nonlinear Dyn. 2017. V. 88. Pp. 1213-1228. https://doi.org/10.1007/s11071-016-3305-0

16. Avramov K., Raimberdiyev T. Bifurcations behavior of bending vibrations of beams with two breathing cracks. Eng. Fract. Mech. 2017. V. 178. Pp. 22-38. https://doi.org/10.1016/j.engfracmech.2017.04.006

17. Avramov K., Malyshev S. Bifurcations and chaotic forced vibrations of cantilever beams with breathing cracks. Eng. Fract. Mech. 2019. V. 214. Pp. 289-303. https://doi.org/10.1016/j.engfracmech.2019.03.021

18. Palmieri A., Cicirello A. Physically-based Dirac's delta functions in the static analysis of multi-cracked Euler-Bernoulli and Timoshenko beams. Int. J. Sol. Struct. 2011. V. 48. Pp. 2184-2195. https://doi.org/10.1016/j.ijsolstr.2011.03.024

19. Dotti F.E., Cortinez V.H., Reguera F. Non-linear dynamic response to simple harmonic excitation of a thin-walled beam with a breathing crack. Appl. Math. Model. 2016. V. 40. Pp. 451-467. https://doi.org/10.1016/j.apm.2015.04.052

20. Zhao X., Zhao Y.R., Gao X.Z., Li X.Y., Li Y.H. Green?s functions for the forced vibrations of cracked Euler-Bernoulli beams. Mech. Sys. Signal Proc. 2016. V. 68-69. Pp. 155-175. https://doi.org/10.1016/j.ymssp.2015.06.023

21. Zhang W., Ma H., Zeng J., Wu S., Wen B. Vibration responses analysis of an elastic-support cantilever beam with crack and offset boundary. Mech. Sys. Signal Proc. 2017. V. 95. Pp. 205-218. https://doi.org/10.1016/j.ymssp.2017.03.032

22. Andreaus U., Casini P., Vestroni F. Non-linear dynamics of a cracked cantilever beam under harmonic excitation. Int. J. Non-Linear Mech. 2007. V. 42. Pp. 566-575. https://doi.org/10.1016/j.ijnonlinmec.2006.08.007

23. Bovsunovskii A.P., Bovsunovskii O.A. Application of nonlinear resonances for the diagnostics of closing cracks in rod like elements. Strength of Mater. 2010. V. 42. Pp. 331-342. https://doi.org/10.1007/s11223-010-9222-4

24. Bovsunovsky A.P., Surace C. Considerations regarding superharmonic vibrations of a cracked beam and the variation in damping caused by the presence of the crack. J. Sound Vib. 2005. V. 288. Pp. 865-886. https://doi.org/10.1016/j.jsv.2005.01.038

25. Pugno N., Surace C. Evaluation of the non-linear dynamic response to harmonic excitation of a beam with several breathing cracks. J. Sound Vib. 2000. V. 235. Pp. 749-762. https://doi.org/10.1006/jsvi.2000.2980

26. Washizu K. Variational Methods in Elasticity and Plasticity. New York: Pergamon Press, 1982. 630 pp.

27. Caddemi S., Calio I. Exact closed-form solution for the vibration modes of the Euler- Bernoulli beam with multiple open cracks. J. Sound Vib. 2009. V. 327. Pp. 473-489. https://doi.org/10.1016/j.jsv.2009.07.008

28. Biondi B., Caddemi S. Closed form solutions of Euler-Bernoulli beams with singularities. Int. J. Solids Struct. 2005. V. 42. Pp. 3027-3044. https://doi.org/10.1016/j.ijsolstr.2004.09.048

29. Mikhlin Y.V., Avramov K.V. Nonlinear normal modes for vibrating mechanical systems. Review of theoretical developments. Appl. Mech..Rev. 2010. V. 63. 060802. https://doi.org/10.1115/1.4003825

30. Avramov K.V., Mikhlin Y.V. Review of applications of nonlinear normal modes for vibrating mechanical systems. Appl. Mech. Rev. 2013. V. 65. 020801. https://doi.org/10.1115/1.4023533

31. Mikhlin Y.V., Avramov K.V. Nonlinear normal modes of vibrating mechanical systems: 10 years of progress. Appl. Mech. Rev. 2024. V. 76. No. 5. 050801. https://doi.org/10.1115/1.4063593

32. Renson L., Kerschen G., Cochelin B. Numerical computation of nonlinear normal modes in mechanical engineering. J Sound Vib. 2016. V. 364. Pp. 177-206. https://doi.org/10.1016/j.jsv.2015.09.033

33. Peeters M., Viguie R., Serandour G., Kerschen G., Golinval J.C. Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques. Mech. Sys. Sign. Proc. 2009. V. 23. Pp. 195-216. https://doi.org/10.1016/j.ymssp.2008.04.003

34. Avramov K. Nonlinear normal modes of multi-walled nanoshells with consideration of surface effect and nonlocal elasticity. Int. J. Non-Llinear Mech. 2024. Vol. 159. 104622. https://doi.org/10.1016/j.ijnonlinmec.2023.104622

35. Villadsen J.V., Stewart W.E. Solution of boundary-value problems by orthogonal collocation. Chem. Eng. Sci. 1967. V. 22. Pp. 1483-1501. https://doi.org/10.1016/0009-2509(67)80074-5

36. Seydel R. Nonlinear computation. Int. J. Bifurcat. Chaos. 1997. V. 7. Pp. 2105-2126. https://doi.org/10.1142/S0218127497001564

37. Doedel E., Keller H.B., Kernevez J.P. Numerical analysis and control of bifurcation problems (I) Bifurcation in finite dimensions. Int. J. Bifurcat. Chaos. 1991. V. 1. Pp. 493-520. https://doi.org/10.1142/S0218127491000397





Copyright (©) 2024 Malyshev S. Ye., Avramov K. V.

Copyright © 2014-2024 Technical mechanics


____________________________________________________________________________________________________________________________
GUIDE
FOR AUTHORS
Guide for Authors ==================== Open Access Policy
Open Access Policy ==================== REGULATIONS
on the ethics of publications
REGULATIONS on the ethics of publications ====================